Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Case Trend Visualizer | Analyzing Legal Case Data
Python for Legal Professionals

bookChallenge: Case Trend Visualizer

When you want to visualize legal case trends over time, you often need to group your data by important columns—such as by 'Year' and 'Outcome'—to reveal patterns. In Python, you can use pandas to read and group data, even from a hardcoded CSV string. To plot these groupings, libraries like matplotlib and seaborn are especially useful. For this challenge, you will work with a hardcoded CSV string that contains legal case data with 'Year' and 'Outcome' columns. First, you will group the data by both year and outcome, count the number of cases for each outcome in each year, and then create a bar chart to visualize these trends. matplotlib or seaborn can create the chart, and you can save the resulting figure as an image file using their built-in save functions. This approach allows you to share your insights visually without needing to read or write any data files.

Aufgabe

Swipe to start coding

Write a script that visualizes the number of legal cases per outcome for each year using hardcoded CSV data. The script should generate a grouped bar chart and save the chart as an image file.

  • Read the hardcoded CSV string into a pandas DataFrame.
  • Group the data by both 'Year' and 'Outcome', counting the number of cases for each combination.
  • Create a bar chart showing the number of cases per outcome for each year.
  • Save the resulting chart as an image file with the specified filename.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Case Trend Visualizer

Swipe um das Menü anzuzeigen

When you want to visualize legal case trends over time, you often need to group your data by important columns—such as by 'Year' and 'Outcome'—to reveal patterns. In Python, you can use pandas to read and group data, even from a hardcoded CSV string. To plot these groupings, libraries like matplotlib and seaborn are especially useful. For this challenge, you will work with a hardcoded CSV string that contains legal case data with 'Year' and 'Outcome' columns. First, you will group the data by both year and outcome, count the number of cases for each outcome in each year, and then create a bar chart to visualize these trends. matplotlib or seaborn can create the chart, and you can save the resulting figure as an image file using their built-in save functions. This approach allows you to share your insights visually without needing to read or write any data files.

Aufgabe

Swipe to start coding

Write a script that visualizes the number of legal cases per outcome for each year using hardcoded CSV data. The script should generate a grouped bar chart and save the chart as an image file.

  • Read the hardcoded CSV string into a pandas DataFrame.
  • Group the data by both 'Year' and 'Outcome', counting the number of cases for each combination.
  • Create a bar chart showing the number of cases per outcome for each year.
  • Save the resulting chart as an image file with the specified filename.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
single

single

some-alt