Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Predicting House Prices | Section
Practice
Projects
Quizzes & Challenges
Quizze
Challenges
/
Regression with Python

bookChallenge: Predicting House Prices

You will now build a real-world example regression model. You have a file, houses_simple.csv, that holds information about housing prices with its area as a feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') print(df.head())
copy

The next step is to assign variables and visualize the dataset:

123456789
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') X = df['square_feet'] y = df['price'] plt.scatter(X, y, alpha=0.5) plt.show()
copy

In the example with a person's height, it was much easier to imagine a line fitting the data well.

But now our data has much more variance since the target highly depends on many other things like age, location, interior, etc.
Anyway, the task is to build the line that best fits the data we have; it will show the trend. The OLS class should be used for that. Soon we will learn how to add more features, it will make the prediction better!

Aufgabe

Swipe to start coding

  1. Assign the 'price' column of df to y.
  2. Create the X_tilde matrix using the add_constant() function from statsmodels(imported as sm).
  3. Initialize the OLS object and train it.
  4. Preprocess X_new array the same way as X.
  5. Predict the target for X_new_tilde matrix.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Predicting House Prices

Swipe um das Menü anzuzeigen

You will now build a real-world example regression model. You have a file, houses_simple.csv, that holds information about housing prices with its area as a feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') print(df.head())
copy

The next step is to assign variables and visualize the dataset:

123456789
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_simple.csv') X = df['square_feet'] y = df['price'] plt.scatter(X, y, alpha=0.5) plt.show()
copy

In the example with a person's height, it was much easier to imagine a line fitting the data well.

But now our data has much more variance since the target highly depends on many other things like age, location, interior, etc.
Anyway, the task is to build the line that best fits the data we have; it will show the trend. The OLS class should be used for that. Soon we will learn how to add more features, it will make the prediction better!

Aufgabe

Swipe to start coding

  1. Assign the 'price' column of df to y.
  2. Create the X_tilde matrix using the add_constant() function from statsmodels(imported as sm).
  3. Initialize the OLS object and train it.
  4. Preprocess X_new array the same way as X.
  5. Predict the target for X_new_tilde matrix.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 5
single

single

some-alt