Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Evaluating the Model | Section
Regression with Python

bookChallenge: Evaluating the Model

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Next, we'll create a scatterplot for this data:

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.

But before you start, recall the PolynomialFeatures class.

fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Aufgabe

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 15
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Evaluating the Model

Swipe um das Menü anzuzeigen

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Next, we'll create a scatterplot for this data:

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.

But before you start, recall the PolynomialFeatures class.

fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Aufgabe

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 15
single

single

some-alt