Challenge: Predicting Prices Using Two Features
For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'and'square_feet'columns ofdftoX. - Preprocess the
Xfor theOLS's class constructor. - Build and train the model using the
OLSclass. - Preprocess the
X_newarray the same asX. - Predict the target for
X_new. - Print the model's summary table.
Lösung
If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Großartig!
Completion Rate verbessert auf 6.67
Challenge: Predicting Prices Using Two Features
Swipe um das Menü anzuzeigen
For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').
1234import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.
Swipe to start coding
- Assign the
'age'and'square_feet'columns ofdftoX. - Preprocess the
Xfor theOLS's class constructor. - Build and train the model using the
OLSclass. - Preprocess the
X_newarray the same asX. - Predict the target for
X_new. - Print the model's summary table.
Lösung
If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.
Danke für Ihr Feedback!
single