Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Predicting Prices Using Two Features | Section
Practice
Projects
Quizzes & Challenges
Quizze
Challenges
/
Regression with Python

bookChallenge: Predicting Prices Using Two Features

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Aufgabe

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Lösung

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 10
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Predicting Prices Using Two Features

Swipe um das Menü anzuzeigen

For this challenge, the same housing dataset will be used. However, now it has two features: age and area of the house (columns 'age' and 'square_feet').

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houseprices.csv') print(df.head())
copy

Your task is to build a Multiple Linear Regression model using the OLS class. Also, you will print the summary table to look at the p-values of each feature.

Aufgabe

Swipe to start coding

  1. Assign the 'age' and 'square_feet' columns of df to X.
  2. Preprocess the X for the OLS's class constructor.
  3. Build and train the model using the OLS class.
  4. Preprocess the X_new array the same as X.
  5. Predict the target for X_new.
  6. Print the model's summary table.

Lösung

If you did everything right, you got the p-values close to zero. That means all our features are significant for the model.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 10
single

single

some-alt