Benchmarking Against Industry Data
1234567891011121314151617import pandas as pd # Sample company financial data company_data = pd.DataFrame({ "Metric": ["Revenue", "Gross Profit", "Operating Expense"], "Value": [500000, 200000, 120000] }) # Sample industry benchmark data industry_data = pd.DataFrame({ "Metric": ["Revenue", "Gross Profit", "Operating Expense"], "Industry_Benchmark": [550000, 210000, 100000] }) # Merge company data with industry benchmarks on 'Metric' merged = pd.merge(company_data, industry_data, on="Metric") print(merged)
123456789101112131415161718192021import matplotlib.pyplot as plt # Continuing from the merged DataFrame above merged["Variance"] = merged["Value"] - merged["Industry_Benchmark"] # Create a bar chart to visualize company vs. industry performance labels = merged["Metric"] company_values = merged["Value"] industry_values = merged["Industry_Benchmark"] x = range(len(labels)) width = 0.35 plt.bar(x, company_values, width=width, label="Company") plt.bar([i + width for i in x], industry_values, width=width, label="Industry Benchmark") plt.xticks([i + width/2 for i in x], labels) plt.ylabel("Amount") plt.title("Company vs. Industry Benchmark") plt.legend() plt.tight_layout() plt.show()
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 3
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Suggested prompts:
Can you explain how to interpret the variance results?
What are some common pitfalls to avoid when benchmarking financial data?
How can I use these insights to improve my company's financial performance?
Großartig!
Completion Rate verbessert auf 7.14
Benchmarking Against Industry Data
Swipe um das Menü anzuzeigen
1234567891011121314151617import pandas as pd # Sample company financial data company_data = pd.DataFrame({ "Metric": ["Revenue", "Gross Profit", "Operating Expense"], "Value": [500000, 200000, 120000] }) # Sample industry benchmark data industry_data = pd.DataFrame({ "Metric": ["Revenue", "Gross Profit", "Operating Expense"], "Industry_Benchmark": [550000, 210000, 100000] }) # Merge company data with industry benchmarks on 'Metric' merged = pd.merge(company_data, industry_data, on="Metric") print(merged)
123456789101112131415161718192021import matplotlib.pyplot as plt # Continuing from the merged DataFrame above merged["Variance"] = merged["Value"] - merged["Industry_Benchmark"] # Create a bar chart to visualize company vs. industry performance labels = merged["Metric"] company_values = merged["Value"] industry_values = merged["Industry_Benchmark"] x = range(len(labels)) width = 0.35 plt.bar(x, company_values, width=width, label="Company") plt.bar([i + width for i in x], industry_values, width=width, label="Industry Benchmark") plt.xticks([i + width/2 for i in x], labels) plt.ylabel("Amount") plt.title("Company vs. Industry Benchmark") plt.legend() plt.tight_layout() plt.show()
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 3