Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Automating Financial Report Generation | Retrieving and Reporting Financial Data
Python for Accountants

bookAutomating Financial Report Generation

12345678910111213141516171819202122232425
import pandas as pd # Simulated internal financial data internal_data = pd.DataFrame({ "Account": ["Revenue", "COGS", "Operating Expenses"], "2023_Q4": [120000, 70000, 20000] }) # Simulated external benchmark data external_data = pd.DataFrame({ "Metric": ["Industry Avg Revenue", "Industry Avg COGS", "Industry Avg OpEx"], "2023_Q4": [130000, 75000, 21000] }) # Consolidate internal and external data into a summary report report = pd.DataFrame({ "Description": ["Revenue", "COGS", "Operating Expenses"], "Company": internal_data["2023_Q4"], "Industry Average": external_data["2023_Q4"] }) # Calculate variance from industry average report["Variance"] = report["Company"] - report["Industry Average"] print(report)
copy
question mark

Select the correct answer

question mark

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 2

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain how the variance is calculated in the report?

What are the benefits of exporting the report to Excel versus CSV?

How can I customize the report to include additional financial metrics?

bookAutomating Financial Report Generation

Swipe um das Menü anzuzeigen

12345678910111213141516171819202122232425
import pandas as pd # Simulated internal financial data internal_data = pd.DataFrame({ "Account": ["Revenue", "COGS", "Operating Expenses"], "2023_Q4": [120000, 70000, 20000] }) # Simulated external benchmark data external_data = pd.DataFrame({ "Metric": ["Industry Avg Revenue", "Industry Avg COGS", "Industry Avg OpEx"], "2023_Q4": [130000, 75000, 21000] }) # Consolidate internal and external data into a summary report report = pd.DataFrame({ "Description": ["Revenue", "COGS", "Operating Expenses"], "Company": internal_data["2023_Q4"], "Industry Average": external_data["2023_Q4"] }) # Calculate variance from industry average report["Variance"] = report["Company"] - report["Industry Average"] print(report)
copy
question mark

Select the correct answer

question mark

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 2
some-alt