Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Clean Stock Price Data | Financial Data Manipulation with Python
Python for Financial Analysts

bookChallenge: Clean Stock Price Data

Before diving into the challenge, recall that missing values are a common issue when working with financial time series data. These gaps can result from market holidays, data transmission errors, or other disruptions. Accurately handling missing values is essential because unaddressed gaps can distort calculations of returns, volatility, correlations, and other key metrics. Ensuring the completeness and consistency of your dataset is a foundational step in maintaining the integrity of your financial analyses.

12345678910111213
import pandas as pd import numpy as np # Example DataFrame: daily closing prices for 4 stocks over 10 business days dates = pd.date_range("2024-06-03", periods=10, freq="B") data = { "AAPL": [189.9, np.nan, 190.5, 191.4, np.nan, 192.0, 191.7, np.nan, 192.5, 192.7], "GOOG": [np.nan, 2775.0, 2780.5, np.nan, 2788.0, 2790.3, np.nan, 2795.0, 2796.8, np.nan], "MSFT": [np.nan, np.nan, 329.5, 330.1, 330.8, np.nan, 332.0, 332.5, np.nan, 333.1], "AMZN": [129.7, 130.1, np.nan, 131.0, 131.5, 132.2, np.nan, np.nan, 133.0, 133.5], } df = pd.DataFrame(data, index=dates) print(df)
copy

To clean this DataFrame, start by identifying how many missing values there are in each column. For each stock, you want to fill missing values using a forward fill, which propagates the last valid observation forward to the next missing value. However, if the first value in a column is missing, forward fill will leave it as NaN. In this case, you should use a backward fill to fill these initial gaps with the next available value. After filling, check again to confirm that all missing values have been addressed. This approach ensures no artificial discontinuities are introduced at the start of your data, which is critical for accurate subsequent analysis.

Aufgabe

Swipe to start coding

You are given a DataFrame containing daily closing prices for four stocks, with some missing values. Your task is to clean the data and summarize the changes.

  • Identify the total number of missing values in the DataFrame before cleaning.
  • Fill missing values using forward fill for each column, but if the first value is missing, fill it with the next available value using backward fill.
  • Create a new DataFrame containing the cleaned data.
  • Identify the total number of missing values after cleaning.
  • Print the number of missing values before cleaning, the cleaned DataFrame, and the number of missing values after cleaning.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

How do I count the missing values in each column?

Can you show me how to apply forward fill and backward fill to this DataFrame?

How do I verify that all missing values have been filled after cleaning?

close

bookChallenge: Clean Stock Price Data

Swipe um das Menü anzuzeigen

Before diving into the challenge, recall that missing values are a common issue when working with financial time series data. These gaps can result from market holidays, data transmission errors, or other disruptions. Accurately handling missing values is essential because unaddressed gaps can distort calculations of returns, volatility, correlations, and other key metrics. Ensuring the completeness and consistency of your dataset is a foundational step in maintaining the integrity of your financial analyses.

12345678910111213
import pandas as pd import numpy as np # Example DataFrame: daily closing prices for 4 stocks over 10 business days dates = pd.date_range("2024-06-03", periods=10, freq="B") data = { "AAPL": [189.9, np.nan, 190.5, 191.4, np.nan, 192.0, 191.7, np.nan, 192.5, 192.7], "GOOG": [np.nan, 2775.0, 2780.5, np.nan, 2788.0, 2790.3, np.nan, 2795.0, 2796.8, np.nan], "MSFT": [np.nan, np.nan, 329.5, 330.1, 330.8, np.nan, 332.0, 332.5, np.nan, 333.1], "AMZN": [129.7, 130.1, np.nan, 131.0, 131.5, 132.2, np.nan, np.nan, 133.0, 133.5], } df = pd.DataFrame(data, index=dates) print(df)
copy

To clean this DataFrame, start by identifying how many missing values there are in each column. For each stock, you want to fill missing values using a forward fill, which propagates the last valid observation forward to the next missing value. However, if the first value in a column is missing, forward fill will leave it as NaN. In this case, you should use a backward fill to fill these initial gaps with the next available value. After filling, check again to confirm that all missing values have been addressed. This approach ensures no artificial discontinuities are introduced at the start of your data, which is critical for accurate subsequent analysis.

Aufgabe

Swipe to start coding

You are given a DataFrame containing daily closing prices for four stocks, with some missing values. Your task is to clean the data and summarize the changes.

  • Identify the total number of missing values in the DataFrame before cleaning.
  • Fill missing values using forward fill for each column, but if the first value is missing, fill it with the next available value using backward fill.
  • Create a new DataFrame containing the cleaned data.
  • Identify the total number of missing values after cleaning.
  • Print the number of missing values before cleaning, the cleaned DataFrame, and the number of missing values after cleaning.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
single

single

some-alt