Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Reshaping | Important Functions
NumPy in a Nutshell

Swipe um das Menü anzuzeigen

book
Reshaping

Sometimes situations arise when we need to somehow change our array, for example, change the size of the array or go from an array of one dimension to an array of another dimension, but with the same data that was originally used. But it is not always convenient to recreate the array from scratch, so some functions modify the array as we need it.

Let's have a look at some of them:

  • np.reshape() - this function changes the shape of an N-dimensional array while maintaining the same total number of elements;

  • np.transpose() - this function transposes the array, essentially swapping its axes;

  • np.concatenate() - this function creates a new array by appending arrays one after another along the specified axis;

  • np.resize() - this function is used to resize an array, creating a copy of the original array with the specified size.

Reshape one-dimensional array into a two-dimensional array:

123456
import numpy as np array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) new_array = array.reshape(4, 3) print(new_array)
copy

Reshape one-dimensional into a three-dimensional array:

123456
import numpy as np array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) new_array = array.reshape(2, 3, 2) print(new_array)
copy
Aufgabe

Swipe to start coding

Consider the following array: [11, 56, 78, 45, 1, 5]. You should obtain the following array: [[11, 56], [78, 45], [1, 5]].

Please use the .reshape() method.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 1
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?

Fragen Sie AI

expand
ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

book
Reshaping

Sometimes situations arise when we need to somehow change our array, for example, change the size of the array or go from an array of one dimension to an array of another dimension, but with the same data that was originally used. But it is not always convenient to recreate the array from scratch, so some functions modify the array as we need it.

Let's have a look at some of them:

  • np.reshape() - this function changes the shape of an N-dimensional array while maintaining the same total number of elements;

  • np.transpose() - this function transposes the array, essentially swapping its axes;

  • np.concatenate() - this function creates a new array by appending arrays one after another along the specified axis;

  • np.resize() - this function is used to resize an array, creating a copy of the original array with the specified size.

Reshape one-dimensional array into a two-dimensional array:

123456
import numpy as np array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) new_array = array.reshape(4, 3) print(new_array)
copy

Reshape one-dimensional into a three-dimensional array:

123456
import numpy as np array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) new_array = array.reshape(2, 3, 2) print(new_array)
copy
Aufgabe

Swipe to start coding

Consider the following array: [11, 56, 78, 45, 1, 5]. You should obtain the following array: [[11, 56], [78, 45], [1, 5]].

Please use the .reshape() method.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 1
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt