Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Loading Data into Databases and Files | Data Transformation and Loading
Quizzes & Challenges
Quizzes
Challenges
/
Data Pipelines with Python

bookLoading Data into Databases and Files

import pandas as pd
import sqlite3

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Connect to SQLite database (or create it)
conn = sqlite3.connect("students.db")

# Write DataFrame to SQLite table named 'students'
df.to_sql("students", conn, if_exists="replace", index=False)

# Close the connection
conn.close()

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data types—SQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

import pandas as pd

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Export DataFrame to CSV file
df.to_csv("students.csv", index=False)

# Export DataFrame to JSON file
df.to_json("students.json", orient="records", lines=True)

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data typesSQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

question mark

What is the best file format choice for exporting a DataFrame when you need a human-readable format?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 3

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

What are some common issues when exporting DataFrames to databases or files?

How can I ensure my DataFrame's schema matches the target system?

Can you explain the differences between CSV and JSON for data export?

bookLoading Data into Databases and Files

Swipe um das Menü anzuzeigen

import pandas as pd
import sqlite3

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Connect to SQLite database (or create it)
conn = sqlite3.connect("students.db")

# Write DataFrame to SQLite table named 'students'
df.to_sql("students", conn, if_exists="replace", index=False)

# Close the connection
conn.close()

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data types—SQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

import pandas as pd

# Create a sample DataFrame
data = {
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "score": [85, 92, 78]
}
df = pd.DataFrame(data)

# Export DataFrame to CSV file
df.to_csv("students.csv", index=False)

# Export DataFrame to JSON file
df.to_json("students.json", orient="records", lines=True)

When loading data into databases or exporting to files, you must consider how your DataFrame's schema maps to the target system. Pay attention to column names and data typesSQLite will infer types from pandas, but mismatches can lead to unexpected results. For file exports, choose the format that best fits your use case: CSV is widely supported and human-readable, while JSON is ideal for nested or hierarchical data. Always check that your data types, encodings, and delimiters align with the requirements of downstream systems or consumers.

question mark

What is the best file format choice for exporting a DataFrame when you need a human-readable format?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 3
some-alt