Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Area Under a Curve | Integration, Interpolation, and Signal Processing
Introduction to SciPy

bookChallenge: Area Under a Curve

In many scientific and engineering applications, you often need to calculate the area under a curve when an exact formula for the integral is not available. This is common in real-world scenarios, such as determining the total distance traveled by an object when you know its velocity at different times but do not have a simple equation for the path. You can use numerical integration to approximate this area efficiently with SciPy's scipy.integrate.quad function.

Aufgabe

Swipe to start coding

Given a function that describes velocity as a function of time, use numerical integration to compute the total distance traveled between a specified start and end time.

  • Integrate the velocity function with respect to time, from start_time to end_time.
  • Return the computed total distance as a floating-point value.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you show me an example of how to use scipy.integrate.quad?

What types of functions can I integrate with this method?

Are there other numerical integration methods in SciPy?

close

Awesome!

Completion rate improved to 4.17

bookChallenge: Area Under a Curve

Swipe um das Menü anzuzeigen

In many scientific and engineering applications, you often need to calculate the area under a curve when an exact formula for the integral is not available. This is common in real-world scenarios, such as determining the total distance traveled by an object when you know its velocity at different times but do not have a simple equation for the path. You can use numerical integration to approximate this area efficiently with SciPy's scipy.integrate.quad function.

Aufgabe

Swipe to start coding

Given a function that describes velocity as a function of time, use numerical integration to compute the total distance traveled between a specified start and end time.

  • Integrate the velocity function with respect to time, from start_time to end_time.
  • Return the computed total distance as a floating-point value.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 4
single

single

some-alt