Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: SVD for Image Compression | Linear Algebra and Matrix Operations
Introduction to SciPy

bookChallenge: SVD for Image Compression

Building on your understanding of matrix operations and singular value decomposition (SVD), you are ready to apply these concepts to a practical scenario: image compression. SVD is a powerful tool for reducing the dimensionality of data, and it is widely used in image processing to compress images while retaining as much of the original information as possible. In this challenge, you will use scipy.linalg.svd to compress a grayscale image matrix by truncating its singular values, then reconstruct the image from the reduced data. This approach demonstrates how SVD can balance image quality and storage efficiency.

Aufgabe

Swipe to start coding

Implement a function that compresses a grayscale image matrix using singular value decomposition (SVD). The function should:

  • Take a 2D NumPy array representing a grayscale image and an integer k as input.
  • Decompose the image matrix using scipy.linalg.svd.
  • Truncate the decomposition to keep only the top k singular values and corresponding vectors.
  • Reconstruct and return the compressed image matrix using the reduced components.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 6
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain how SVD is used for image compression in simple terms?

What are the steps to compress and reconstruct an image using SVD?

How do I choose the number of singular values to keep for good compression?

close

Awesome!

Completion rate improved to 4.17

bookChallenge: SVD for Image Compression

Swipe um das Menü anzuzeigen

Building on your understanding of matrix operations and singular value decomposition (SVD), you are ready to apply these concepts to a practical scenario: image compression. SVD is a powerful tool for reducing the dimensionality of data, and it is widely used in image processing to compress images while retaining as much of the original information as possible. In this challenge, you will use scipy.linalg.svd to compress a grayscale image matrix by truncating its singular values, then reconstruct the image from the reduced data. This approach demonstrates how SVD can balance image quality and storage efficiency.

Aufgabe

Swipe to start coding

Implement a function that compresses a grayscale image matrix using singular value decomposition (SVD). The function should:

  • Take a 2D NumPy array representing a grayscale image and an integer k as input.
  • Decompose the image matrix using scipy.linalg.svd.
  • Truncate the decomposition to keep only the top k singular values and corresponding vectors.
  • Reconstruct and return the compressed image matrix using the reduced components.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 6
single

single

some-alt