Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Clean Transaction Data | Financial Data Analysis for Bankers
Python for Bankers

bookChallenge: Clean Transaction Data

In banking, transaction data often arrives with missing values and duplicate records, which can hinder accurate analysis and reporting. As you work with financial DataFrames, it's crucial to ensure that the data is clean, consistent, and ready for downstream processing. Your task is to take a DataFrame containing transaction records, some of which have missing amounts and duplicate entries, and prepare it for further use by addressing these common data quality issues.

Aufgabe

Swipe to start coding

Given a DataFrame containing transaction records, some with missing amounts and duplicate entries, your goal is to clean the data for further analysis.

  • Fill all missing values in the Amount column with zero.
  • Remove any duplicate rows from the DataFrame.
  • Ensure all values in the Amount column are of type float.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 7
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Clean Transaction Data

Swipe um das Menü anzuzeigen

In banking, transaction data often arrives with missing values and duplicate records, which can hinder accurate analysis and reporting. As you work with financial DataFrames, it's crucial to ensure that the data is clean, consistent, and ready for downstream processing. Your task is to take a DataFrame containing transaction records, some of which have missing amounts and duplicate entries, and prepare it for further use by addressing these common data quality issues.

Aufgabe

Swipe to start coding

Given a DataFrame containing transaction records, some with missing amounts and duplicate entries, your goal is to clean the data for further analysis.

  • Fill all missing values in the Amount column with zero.
  • Remove any duplicate rows from the DataFrame.
  • Ensure all values in the Amount column are of type float.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 7
single

single

some-alt