Iterative Search with HalvingGridSearchCV
Successive Halving is a resource-efficient hyperparameter tuning method that works in rounds:
- Start by evaluating many hyperparameter combinations with minimal resources;
- After each round, keep only the best-performing candidates;
- Allocate more resources to these candidates in the next round;
- Repeat the process until you identify the top performers.
This approach quickly narrows down promising settings while saving computation by discarding poor options early.
Successive Halving: Reducing Computation
Successive halving streamlines hyperparameter search by focusing resources on the best candidates through an iterative process:
- Begin with many hyperparameter combinations, each given minimal resources;
- Evaluate all candidates and rank their performance;
- Eliminate a fixed proportion of the lowest-performing candidates after each round;
- Increase resources for the remaining, better-performing candidates;
- Repeat these steps until only the top candidates remain.
This approach quickly narrows down the search, saving computation and time compared to exhaustive grid search.
12345678910111213141516171819202122232425262728293031from sklearn.experimental import enable_halving_search_cv # noqa from sklearn.model_selection import HalvingGridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris # Load example data data = load_iris() X, y = data.data, data.target # Define a simple parameter grid param_grid = { 'n_estimators': [10, 50, 100], 'max_depth': [2, 4, 6] } # Initialize the classifier clf = RandomForestClassifier(random_state=42) # Set up HalvingGridSearchCV halving_search = HalvingGridSearchCV( estimator=clf, param_grid=param_grid, factor=2, random_state=42 ) # Fit the model halving_search.fit(X, y) # Show the best parameters print(halving_search.best_params_)
HalvingGridSearchCV often delivers similar accuracy to regular GridSearchCV but is much more runtime efficient. It quickly eliminates underperforming hyperparameter combinations using fewer resources, so you spend less time training models that are unlikely to perform well. Regular GridSearchCV tests every possible combination, which can be slow for large search spaces but may guarantee finding the absolute best set if resources are unlimited.
HalvingGridSearchCV is still experimental in scikit-learn. To use it, you must enable experimental features by importing:
from sklearn.experimental import enable_halving_search_cv # noqa
from sklearn.model_selection import HalvingGridSearchCV
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 9.09
Iterative Search with HalvingGridSearchCV
Swipe um das Menü anzuzeigen
Successive Halving is a resource-efficient hyperparameter tuning method that works in rounds:
- Start by evaluating many hyperparameter combinations with minimal resources;
- After each round, keep only the best-performing candidates;
- Allocate more resources to these candidates in the next round;
- Repeat the process until you identify the top performers.
This approach quickly narrows down promising settings while saving computation by discarding poor options early.
Successive Halving: Reducing Computation
Successive halving streamlines hyperparameter search by focusing resources on the best candidates through an iterative process:
- Begin with many hyperparameter combinations, each given minimal resources;
- Evaluate all candidates and rank their performance;
- Eliminate a fixed proportion of the lowest-performing candidates after each round;
- Increase resources for the remaining, better-performing candidates;
- Repeat these steps until only the top candidates remain.
This approach quickly narrows down the search, saving computation and time compared to exhaustive grid search.
12345678910111213141516171819202122232425262728293031from sklearn.experimental import enable_halving_search_cv # noqa from sklearn.model_selection import HalvingGridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris # Load example data data = load_iris() X, y = data.data, data.target # Define a simple parameter grid param_grid = { 'n_estimators': [10, 50, 100], 'max_depth': [2, 4, 6] } # Initialize the classifier clf = RandomForestClassifier(random_state=42) # Set up HalvingGridSearchCV halving_search = HalvingGridSearchCV( estimator=clf, param_grid=param_grid, factor=2, random_state=42 ) # Fit the model halving_search.fit(X, y) # Show the best parameters print(halving_search.best_params_)
HalvingGridSearchCV often delivers similar accuracy to regular GridSearchCV but is much more runtime efficient. It quickly eliminates underperforming hyperparameter combinations using fewer resources, so you spend less time training models that are unlikely to perform well. Regular GridSearchCV tests every possible combination, which can be slow for large search spaces but may guarantee finding the absolute best set if resources are unlimited.
HalvingGridSearchCV is still experimental in scikit-learn. To use it, you must enable experimental features by importing:
from sklearn.experimental import enable_halving_search_cv # noqa
from sklearn.model_selection import HalvingGridSearchCV
Danke für Ihr Feedback!