Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Columns Overview | Preprocessing Data: Part I
Analyzing and Visualizing Real-World Data

bookColumns Overview

We can see that only two types of data are presented in the dataframe: object and int64. Columns that have an object data type contain string objects, which makes aggregation impossible for them. Among these columns are Weekly_Sales, Temperature, Fuel_Price, and others. It is obvious that all the mentioned columns must be numerical. We might be interested in comparing the revenue for different dates, but with object data, it's impossible.

Let's solve problems step by step. First, let's remind ourselves what our data looks like by outputting a single row.

12345678
# Loading the library import pandas as pd # Reading the data df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv') # Displaying a single dataframe row print(df.sample())
copy

Pay close attention to the values and try to find out why most of the columns are considered object columns.

question mark

What is wrong with the 'Temperature', 'Fuel_Price', and 'Unemployment' columns?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Fragen Sie mich Fragen zu diesem Thema

Zusammenfassen Sie dieses Kapitel

Zeige reale Beispiele

Awesome!

Completion rate improved to 3.45

bookColumns Overview

Swipe um das Menü anzuzeigen

We can see that only two types of data are presented in the dataframe: object and int64. Columns that have an object data type contain string objects, which makes aggregation impossible for them. Among these columns are Weekly_Sales, Temperature, Fuel_Price, and others. It is obvious that all the mentioned columns must be numerical. We might be interested in comparing the revenue for different dates, but with object data, it's impossible.

Let's solve problems step by step. First, let's remind ourselves what our data looks like by outputting a single row.

12345678
# Loading the library import pandas as pd # Reading the data df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/72be5dde-f3e6-4c40-8881-e1d97ae31287/shops_data_init.csv') # Displaying a single dataframe row print(df.sample())
copy

Pay close attention to the values and try to find out why most of the columns are considered object columns.

question mark

What is wrong with the 'Temperature', 'Fuel_Price', and 'Unemployment' columns?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
some-alt