Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Multi-Class Classification | Section
Classification with Python

bookMulti-Class Classification

Multi-class classification with k-NN is as easy as binary classification. We just pick the class that prevails in the neighborhood.

The KNeighborsClassifier automatically performs a multi-class classification if y has more than two features, so you do not need to change anything. The only thing that changes is the y variable fed to the .fit() method.

Now, you will perform a multi-class classification with k-NN. Consider the following dataset:

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/starwars_multiple.csv') print(df.head())
copy

It is the same as in the previous chapter's example, but now the target can take three values:

  • 0: "Hated it" (rating is less than 3/5);
  • 1: "Meh" (rating between 3/5 and 4/5);
  • 2: "Liked it" (rating is 4/5 or higher).
Aufgabe

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize an appropriate scaler and store it in the scaler variable.
  • Calculate the scaling parameters on the training data, scale it, and store the result in the X_train variable.
  • Scale the test data and store the result in the X_test variable.
  • Create an instance of k-NN with 13 neighbors, train it on the training set, and store it in the knn variable.
  • Make predictions on the test set and store them in the y_pred variable.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookMulti-Class Classification

Swipe um das Menü anzuzeigen

Multi-class classification with k-NN is as easy as binary classification. We just pick the class that prevails in the neighborhood.

The KNeighborsClassifier automatically performs a multi-class classification if y has more than two features, so you do not need to change anything. The only thing that changes is the y variable fed to the .fit() method.

Now, you will perform a multi-class classification with k-NN. Consider the following dataset:

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/starwars_multiple.csv') print(df.head())
copy

It is the same as in the previous chapter's example, but now the target can take three values:

  • 0: "Hated it" (rating is less than 3/5);
  • 1: "Meh" (rating between 3/5 and 4/5);
  • 2: "Liked it" (rating is 4/5 or higher).
Aufgabe

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize an appropriate scaler and store it in the scaler variable.
  • Calculate the scaling parameters on the training data, scale it, and store the result in the X_train variable.
  • Scale the test data and store the result in the X_test variable.
  • Create an instance of k-NN with 13 neighbors, train it on the training set, and store it in the knn variable.
  • Make predictions on the test set and store them in the y_pred variable.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 5
single

single

some-alt