Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Integrate Dropout and BatchNorm | Regularization Techniques
Optimization and Regularization in Neural Networks with Python

bookChallenge: Integrate Dropout and BatchNorm

Aufgabe

Swipe to start coding

You will extend a simple neural network by integrating Dropout and Batch Normalization. Your goal is to correctly insert these layers into the architecture and perform a forward pass.

You are given:

  • Input batch x
  • A partially defined network class
  • A forward method missing some components

Complete the following steps:

  1. Add a Dropout layer after the first fully connected layer.

  2. Add a BatchNorm layer immediately after Dropout.

  3. Complete the forward pass so that the data flows through:

    • Linear → ReLU → Dropout → BatchNorm → Linear
  4. Ensure Dropout is used only during training (PyTorch handles this automatically).

After execution, the script prints the network output.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

bookChallenge: Integrate Dropout and BatchNorm

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You will extend a simple neural network by integrating Dropout and Batch Normalization. Your goal is to correctly insert these layers into the architecture and perform a forward pass.

You are given:

  • Input batch x
  • A partially defined network class
  • A forward method missing some components

Complete the following steps:

  1. Add a Dropout layer after the first fully connected layer.

  2. Add a BatchNorm layer immediately after Dropout.

  3. Complete the forward pass so that the data flows through:

    • Linear → ReLU → Dropout → BatchNorm → Linear
  4. Ensure Dropout is used only during training (PyTorch handles this automatically).

After execution, the script prints the network output.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 5
single

single

some-alt