Challenge: Predict Asset Returns with Linear Regression
Swipe to start coding
You are given a DataFrame containing daily returns for two assets and the market. Your task is to build a linear regression model to predict the returns of Asset_A using Asset_B and Market returns as features.
- Implement the function
predict_asset_returns(df). - Use
Asset_BandMarketcolumns as input features (X), andAsset_Aas the target variable (y). - Fit a linear regression model using scikit-learn's
LinearRegression. - Use the model to predict Asset_A returns for the same input data.
- Return the predictions as a numpy array.
- Print the predictions after calling your function.
Lösung
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Can you explain this in simpler terms?
What are the main points I should remember?
Can you give me an example?
Großartig!
Completion Rate verbessert auf 4.76
Challenge: Predict Asset Returns with Linear Regression
Swipe um das Menü anzuzeigen
Swipe to start coding
You are given a DataFrame containing daily returns for two assets and the market. Your task is to build a linear regression model to predict the returns of Asset_A using Asset_B and Market returns as features.
- Implement the function
predict_asset_returns(df). - Use
Asset_BandMarketcolumns as input features (X), andAsset_Aas the target variable (y). - Fit a linear regression model using scikit-learn's
LinearRegression. - Use the model to predict Asset_A returns for the same input data.
- Return the predictions as a numpy array.
- Print the predictions after calling your function.
Lösung
Danke für Ihr Feedback!
single