Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Visualizing Keyword Trends | Keyword Research and Analysis with Python
Python for SEO Specialists

bookVisualizing Keyword Trends

Understanding keyword trends is crucial for effective SEO planning and reporting. By visualizing how search volumes for specific keywords change over time, you can identify seasonality, spot emerging topics, and make data-driven decisions about content strategy. Visualizations help you communicate these trends clearly to stakeholders and uncover opportunities or threats in your SEO campaigns.

123456789101112
import pandas as pd # Hardcoded monthly search volumes for three keywords data = { "Month": ["2024-01", "2024-02", "2024-03", "2024-04", "2024-05"], "python seo": [1200, 1300, 1250, 1350, 1400], "keyword research": [2000, 2100, 2050, 2300, 2500], "search trends": [800, 850, 900, 950, 1000] } df = pd.DataFrame(data) print(df)
copy

To visualize keyword trends, you can use line plots from the matplotlib library. Line plots are ideal for showing how values change over time, making them perfect for displaying monthly search volumes. By plotting each keyword as a separate line on the same chart, you can easily compare their trends and spot which keywords are gaining or losing popularity. The plt.plot() function is commonly used to create line plots, and you can add labels, a legend, and axis titles for clarity.

123456789101112131415
import matplotlib.pyplot as plt # Plot search volume trends for multiple keywords plt.figure(figsize=(10, 6)) plt.plot(df["Month"], df["python seo"], marker="o", label="python seo") plt.plot(df["Month"], df["keyword research"], marker="o", label="keyword research") plt.plot(df["Month"], df["search trends"], marker="o", label="search trends") plt.title("Keyword Search Volume Trends (2024)") plt.xlabel("Month") plt.ylabel("Search Volume") plt.legend() plt.grid(True) plt.tight_layout() plt.show()
copy

1. What is the benefit of visualizing keyword trends?

2. Which matplotlib function creates a line plot?

3. Fill in the blank: To show a matplotlib plot, use ____.

question mark

What is the benefit of visualizing keyword trends?

Select the correct answer

question mark

Which matplotlib function creates a line plot?

Select the correct answer

question-icon

Fill in the blank: To show a matplotlib plot, use ____.

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain how to interpret the line chart results?

What other types of visualizations can I use for keyword trends?

How can I add more keywords to this analysis?

bookVisualizing Keyword Trends

Swipe um das Menü anzuzeigen

Understanding keyword trends is crucial for effective SEO planning and reporting. By visualizing how search volumes for specific keywords change over time, you can identify seasonality, spot emerging topics, and make data-driven decisions about content strategy. Visualizations help you communicate these trends clearly to stakeholders and uncover opportunities or threats in your SEO campaigns.

123456789101112
import pandas as pd # Hardcoded monthly search volumes for three keywords data = { "Month": ["2024-01", "2024-02", "2024-03", "2024-04", "2024-05"], "python seo": [1200, 1300, 1250, 1350, 1400], "keyword research": [2000, 2100, 2050, 2300, 2500], "search trends": [800, 850, 900, 950, 1000] } df = pd.DataFrame(data) print(df)
copy

To visualize keyword trends, you can use line plots from the matplotlib library. Line plots are ideal for showing how values change over time, making them perfect for displaying monthly search volumes. By plotting each keyword as a separate line on the same chart, you can easily compare their trends and spot which keywords are gaining or losing popularity. The plt.plot() function is commonly used to create line plots, and you can add labels, a legend, and axis titles for clarity.

123456789101112131415
import matplotlib.pyplot as plt # Plot search volume trends for multiple keywords plt.figure(figsize=(10, 6)) plt.plot(df["Month"], df["python seo"], marker="o", label="python seo") plt.plot(df["Month"], df["keyword research"], marker="o", label="keyword research") plt.plot(df["Month"], df["search trends"], marker="o", label="search trends") plt.title("Keyword Search Volume Trends (2024)") plt.xlabel("Month") plt.ylabel("Search Volume") plt.legend() plt.grid(True) plt.tight_layout() plt.show()
copy

1. What is the benefit of visualizing keyword trends?

2. Which matplotlib function creates a line plot?

3. Fill in the blank: To show a matplotlib plot, use ____.

question mark

What is the benefit of visualizing keyword trends?

Select the correct answer

question mark

Which matplotlib function creates a line plot?

Select the correct answer

question-icon

Fill in the blank: To show a matplotlib plot, use ____.

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
some-alt