Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Solve for Beam Deflection | Mathematical Modeling and Simulation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Engineers

bookChallenge: Solve for Beam Deflection

Nonlinear equations frequently arise in engineering analysis, especially when modeling real-world systems that cannot be described by simple linear relationships. In previous chapters, you explored how numerical approaches can be used to solve equations that do not have straightforward analytical solutions. For example, when analyzing the deflection of beams under load, the governing equations often become nonlinear due to the presence of trigonometric or other nonlinear terms. In these cases, root-finding algorithms such as those provided by scipy.optimize become essential tools for engineers seeking practical solutions.

Aufgabe

Swipe to start coding

Solve for the deflection angle y (in radians) for a simply supported beam where the equation is P*sin(y) - 1000 = 0 and P is given as 1200 N.

  • Define a function that represents the equation P*sin(y) - 1000.
  • Use a root-finding method to solve for y given P.
  • Return the value of y that satisfies the equation.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Solve for Beam Deflection

Swipe um das Menü anzuzeigen

Nonlinear equations frequently arise in engineering analysis, especially when modeling real-world systems that cannot be described by simple linear relationships. In previous chapters, you explored how numerical approaches can be used to solve equations that do not have straightforward analytical solutions. For example, when analyzing the deflection of beams under load, the governing equations often become nonlinear due to the presence of trigonometric or other nonlinear terms. In these cases, root-finding algorithms such as those provided by scipy.optimize become essential tools for engineers seeking practical solutions.

Aufgabe

Swipe to start coding

Solve for the deflection angle y (in radians) for a simply supported beam where the equation is P*sin(y) - 1000 = 0 and P is given as 1200 N.

  • Define a function that represents the equation P*sin(y) - 1000.
  • Use a root-finding method to solve for y given P.
  • Return the value of y that satisfies the equation.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
single

single

some-alt