Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Predict Equipment Failure Time | Engineering Data Science Applications
Python for Engineers

bookChallenge: Predict Equipment Failure Time

Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.

Aufgabe

Swipe to start coding

Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.

  • Fit a linear regression model using hours_list as input and failure_days_list as output.
  • Retrieve the model coefficient and intercept.
  • Use the model to predict the time-to-failure for the given query_hours.
  • Return the coefficient, intercept, and prediction.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Predict Equipment Failure Time

Swipe um das Menü anzuzeigen

Predictive modeling plays a crucial role in engineering maintenance, allowing you to anticipate equipment failures and schedule repairs before breakdowns occur. In the previous chapter, you learned how predictive models can use historical data to estimate when a system might need attention. Now, you will apply this knowledge to a practical scenario using scikit-learn's LinearRegression: you have data on total operating hours and corresponding time-to-failure in days for several machines. Your goal is to build a model that predicts how long a machine will last before failing, given its operating hours.

Aufgabe

Swipe to start coding

Given lists of machine operating hours and their corresponding time-to-failure in days, build a linear regression model to predict future failures.

  • Fit a linear regression model using hours_list as input and failure_days_list as output.
  • Retrieve the model coefficient and intercept.
  • Use the model to predict the time-to-failure for the given query_hours.
  • Return the coefficient, intercept, and prediction.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 5
single

single

some-alt