Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge 1: Data Scaling | Scikit-learn
Data Science Interview Challenge

Swipe um das Menü anzuzeigen

book
Challenge 1: Data Scaling

In the realm of data science and machine learning, data scaling is a critical preprocessing step. It primarily involves transforming the features (variables) of the dataset to a standard scale, ensuring that each feature has a similar scale or range. This is especially significant for algorithms that rely on distances or gradients, as it ensures that all features contribute equally to the outcome and the algorithm converges more efficiently.

Here's a demonstration of how the scaling utilities from scikit-learn modify the data distribution:

Aufgabe

Swipe to start coding

In this task, you will be working with the popular Iris dataset. Your objective is to apply two types of scalers to the data and compare the resulting datasets.

  1. Use the StandardScaler class to standardize the dataset, which means transforming it to have a mean of 0 and a standard deviation of 1.
  2. Use the MinMaxScaler class to rescale the dataset. Ensure that after scaling, the feature values lie between -1 and 1.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 7. Kapitel 1
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?

Fragen Sie AI

expand
ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

book
Challenge 1: Data Scaling

In the realm of data science and machine learning, data scaling is a critical preprocessing step. It primarily involves transforming the features (variables) of the dataset to a standard scale, ensuring that each feature has a similar scale or range. This is especially significant for algorithms that rely on distances or gradients, as it ensures that all features contribute equally to the outcome and the algorithm converges more efficiently.

Here's a demonstration of how the scaling utilities from scikit-learn modify the data distribution:

Aufgabe

Swipe to start coding

In this task, you will be working with the popular Iris dataset. Your objective is to apply two types of scalers to the data and compare the resulting datasets.

  1. Use the StandardScaler class to standardize the dataset, which means transforming it to have a mean of 0 and a standard deviation of 1.
  2. Use the MinMaxScaler class to rescale the dataset. Ensure that after scaling, the feature values lie between -1 and 1.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 7. Kapitel 1
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt