Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Predict Student Scores Based on Study Hours | Probability, Statistics, and Simulation
Python for Mathematics

bookChallenge: Predict Student Scores Based on Study Hours

Predicting student performance based on study habits is a practical application of regression analysis in education. By examining the relationship between the number of hours a student studies and their exam scores, you can model how changes in study time might affect outcomes. Linear regression is a statistical technique that fits a straight line to data points, allowing you to make predictions about one variable based on another. In this context, you will use Python's scikit-learn library to build a simple linear regression model, visualize the results using matplotlib, and predict the exam score for a student who studies a specific number of hours.

123456789101112131415161718192021222324252627
import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression # Example data: hours studied and corresponding exam scores hours = [2, 3, 5, 6, 8, 10] scores = [50, 55, 65, 70, 80, 90] # Prepare the data for regression (reshape for sklearn) X = np.array(hours).reshape(-1, 1) y = np.array(scores) # Fit the linear regression model model = LinearRegression() model.fit(X, y) # Predict scores for the training data predicted_scores = model.predict(X) # Plot the data and the regression line plt.scatter(hours, scores, color='blue', label='Actual Scores') plt.plot(hours, predicted_scores, color='red', label='Regression Line') plt.xlabel('Hours Studied') plt.ylabel('Exam Score') plt.title('Student Scores vs Study Hours') plt.legend() plt.show()
copy
Aufgabe

Swipe to start coding

Write a function that performs linear regression on two lists, hours and scores, and predicts the exam score for a given number of study hours.

  • Fit a linear regression model using hours as the independent variable and scores as the dependent variable.
  • Plot the original data points and the regression line using matplotlib.
  • Predict the exam score for the value in predict_hours and print the predicted value.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 7
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Predict Student Scores Based on Study Hours

Swipe um das Menü anzuzeigen

Predicting student performance based on study habits is a practical application of regression analysis in education. By examining the relationship between the number of hours a student studies and their exam scores, you can model how changes in study time might affect outcomes. Linear regression is a statistical technique that fits a straight line to data points, allowing you to make predictions about one variable based on another. In this context, you will use Python's scikit-learn library to build a simple linear regression model, visualize the results using matplotlib, and predict the exam score for a student who studies a specific number of hours.

123456789101112131415161718192021222324252627
import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression # Example data: hours studied and corresponding exam scores hours = [2, 3, 5, 6, 8, 10] scores = [50, 55, 65, 70, 80, 90] # Prepare the data for regression (reshape for sklearn) X = np.array(hours).reshape(-1, 1) y = np.array(scores) # Fit the linear regression model model = LinearRegression() model.fit(X, y) # Predict scores for the training data predicted_scores = model.predict(X) # Plot the data and the regression line plt.scatter(hours, scores, color='blue', label='Actual Scores') plt.plot(hours, predicted_scores, color='red', label='Regression Line') plt.xlabel('Hours Studied') plt.ylabel('Exam Score') plt.title('Student Scores vs Study Hours') plt.legend() plt.show()
copy
Aufgabe

Swipe to start coding

Write a function that performs linear regression on two lists, hours and scores, and predicts the exam score for a given number of study hours.

  • Fit a linear regression model using hours as the independent variable and scores as the dependent variable.
  • Plot the original data points and the regression line using matplotlib.
  • Predict the exam score for the value in predict_hours and print the predicted value.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 7
single

single

some-alt