Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Zusammenfassung | Grundlagen von Tensorflow
Einführung in TensorFlow

bookZusammenfassung

Die wichtigsten in diesem Kurs behandelten Themen sind nachfolgend zusammengefasst. Das Übersichtsmaterial steht am Ende dieser Seite zum Download bereit.

TensorFlow-Einrichtung

Installation

pip install tensorflow

Import

# Import the TensorFlow library with the alias tf
import tensorflow as tf

Tensor-Typen

Einfache Tensor-Erstellung

# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])

# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])

# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])

Tensor-Eigenschaften

  • Rang: Gibt die Anzahl der Dimensionen eines Tensors an. Beispielsweise besitzt eine Matrix einen Rang von 2. Der Rang eines Tensors kann mit dem Attribut .ndim abgerufen werden:
print(f'Rank of a tensor: {tensor.ndim}')
  • Shape: Beschreibt, wie viele Werte in jeder Dimension vorhanden sind. Eine 2x3-Matrix hat die Form (2, 3). Die Länge des Shape-Parameters entspricht dem Rang des Tensors (seiner Anzahl an Dimensionen). Die Form eines Tensors kann mit dem Attribut .shape abgerufen werden:
print(f'Shape of a tensor: {tensor.shape}')
  • Typen: Tensors existieren in verschiedenen Datentypen. Zu den gängigen Typen zählen float32, int32 und string. Der Datentyp eines Tensors kann mit dem Attribut .dtype abgerufen werden:
print(f'Data type of a tensor: {tensor.dtype}')

Tensorachsen

Anwendungen von Tensoren

  • Table Data
  • Textsequenzen
  • Numerische Sequenzen
  • Bildverarbeitung
  • Videobearbeitung

Batches

Methoden zur Tensor-Erstellung

# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])

# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])

# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))

# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))

# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)

# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)

# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)

# Tensor of shape (2, 2) with random values normally distributed 
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)

# Tensor of shape (2, 2) with random values uniformly distributed 
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)

Konvertierungen

  • NumPy zu Tensor
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])

# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
  • Pandas zu Tensor
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})

# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
  • Konstanter Tensor zu variablem Tensor
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)

# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))

Datentypen

# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)

# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)

Arithmetik

  • Addition
c1 = tf.add(a, b)  
c2 = a + b

# Changes the object inplace without creating a new one
a.assign_add(b)
  • Subtraktion
c1 = tf.subtract(a, b)  
c2 = a - b 

# Inplace substraction
a.assign_sub(b)
  • Elementweise Multiplikation
c1 = tf.multiply(a, b)  
c2 = a * b
  • Division
c1 = tf.divide(a, b)  
c2 = a / b 

Broadcasting

Lineare Algebra

  • Matrixmultiplikation
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
  • Matrixinversion
inverse_mat = tf.linalg.inv(matrix)
  • Transponieren
transposed = tf.transpose(matrix)
  • Skalarprodukt
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)

Umformen

# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])

# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))

Slicing

# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))

# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))

Modifizieren mit Slicing

# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Change the entire first row 
tensor[0, :].assign([0, 0, 0])

# Modify the second and the third columns 
tensor[:, 1:3].assign(tf.fill((3,2), 1))

Konkatenation

# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])

# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)

# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)

Reduktionsoperationen

# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)

# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)

# Determine the maximum value
max_val = tf.reduce_max(tensor)

# Find the minimum value
min_val = tf.reduce_min(tensor)

Gradient Tape

# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)

# Start recording the operations
with tf.GradientTape() as tape:
    # Define the calculations
    y = tf.reduce_sum(x * x + 2 * z)
    
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])

print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")

@tf.function

@tf.function
def compute_gradient_conditional(x):
    with tf.GradientTape() as tape:
        if tf.reduce_sum(x) > 0:
            y = x * x
        else:
            y = x * x * x
    return tape.gradient(y, x)

x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
question mark

Welche Rolle spielt eine Verlustfunktion in einem neuronalen Netzwerk?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Awesome!

Completion rate improved to 5.56

bookZusammenfassung

Swipe um das Menü anzuzeigen

Die wichtigsten in diesem Kurs behandelten Themen sind nachfolgend zusammengefasst. Das Übersichtsmaterial steht am Ende dieser Seite zum Download bereit.

TensorFlow-Einrichtung

Installation

pip install tensorflow

Import

# Import the TensorFlow library with the alias tf
import tensorflow as tf

Tensor-Typen

Einfache Tensor-Erstellung

# Create a 1D tensor
tensor_1D = tf.constant([1, 2, 3])

# Create a 2D tensor
tensor_2D = tf.constant([[1, 2, 3], [4, 5, 6]])

# Create a 3D tensor
tensor_3D = tf.constant([[[1, 2], [3, 4]], [[5, 6],[7, 8]]])

Tensor-Eigenschaften

  • Rang: Gibt die Anzahl der Dimensionen eines Tensors an. Beispielsweise besitzt eine Matrix einen Rang von 2. Der Rang eines Tensors kann mit dem Attribut .ndim abgerufen werden:
print(f'Rank of a tensor: {tensor.ndim}')
  • Shape: Beschreibt, wie viele Werte in jeder Dimension vorhanden sind. Eine 2x3-Matrix hat die Form (2, 3). Die Länge des Shape-Parameters entspricht dem Rang des Tensors (seiner Anzahl an Dimensionen). Die Form eines Tensors kann mit dem Attribut .shape abgerufen werden:
print(f'Shape of a tensor: {tensor.shape}')
  • Typen: Tensors existieren in verschiedenen Datentypen. Zu den gängigen Typen zählen float32, int32 und string. Der Datentyp eines Tensors kann mit dem Attribut .dtype abgerufen werden:
print(f'Data type of a tensor: {tensor.dtype}')

Tensorachsen

Anwendungen von Tensoren

  • Table Data
  • Textsequenzen
  • Numerische Sequenzen
  • Bildverarbeitung
  • Videobearbeitung

Batches

Methoden zur Tensor-Erstellung

# Create a 2x2 constant tensor
tensor_const = tf.constant([[1, 2], [3, 4]])

# Create a variable tensor
tensor_var = tf.Variable([[1, 2], [3, 4]])

# Zero tensor of shape (3, 3)
tensor_zeros = tf.zeros((3, 3))

# Ones tensor of shape (2, 2)
tensor_ones = tf.ones((2, 2))

# Tensor of shape (2, 2) filled with 6
tensor_fill = tf.fill((2, 2), 6)

# Generate a sequence of numbers starting from 0, ending at 9
tensor_range = tf.range(10)

# Create 5 equally spaced values between 0 and 10
tensor_linspace = tf.linspace(0, 10, 5)

# Tensor of shape (2, 2) with random values normally distributed 
tensor_random = tf.random.normal((2, 2), mean=4, stddev=0.5)

# Tensor of shape (2, 2) with random values uniformly distributed 
tensor_random = tf.random.uniform((2, 2), minval=-2, maxval=2)

Konvertierungen

  • NumPy zu Tensor
# Create a NumPy array based on a Python list
numpy_array = np.array([[1, 2], [3, 4]])

# Convert a NumPy array to a tensor
tensor_from_np = tf.convert_to_tensor(numpy_array)
  • Pandas zu Tensor
# Create a DataFrame based on dictionary
df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})

# Convert a DataFrame to a tensor
tensor_from_df = tf.convert_to_tensor(df.values)
  • Konstanter Tensor zu variablem Tensor
# Create a variable from a tensor
tensor = tf.random.normal((2, 3))
variable_1 = tf.Variable(tensor)

# Create a variable based on other generator
variable_2 = tf.Variable(tf.zeros((2, 2)))

Datentypen

# Creating a tensor of type float16
tensor_float = tf.constant([1.2, 2.3, 3.4], dtype=tf.float16)

# Convert tensor_float from float32 to int32
tensor_int = tf.cast(tensor_float, dtype=tf.int32)

Arithmetik

  • Addition
c1 = tf.add(a, b)  
c2 = a + b

# Changes the object inplace without creating a new one
a.assign_add(b)
  • Subtraktion
c1 = tf.subtract(a, b)  
c2 = a - b 

# Inplace substraction
a.assign_sub(b)
  • Elementweise Multiplikation
c1 = tf.multiply(a, b)  
c2 = a * b
  • Division
c1 = tf.divide(a, b)  
c2 = a / b 

Broadcasting

Lineare Algebra

  • Matrixmultiplikation
product1 = tf.matmul(matrix1, matrix2)
product2 = matrix1 @ matrix2
  • Matrixinversion
inverse_mat = tf.linalg.inv(matrix)
  • Transponieren
transposed = tf.transpose(matrix)
  • Skalarprodukt
# Dot product along axes
dot_product_axes1 = tf.tensordot(matrix1, matrix2, axes=1)
dot_product_axes0 = tf.tensordot(matrix1, matrix2, axes=0)

Umformen

# Create a tensor with shape (3, 2)
tensor = tf.constant([[1, 2], [3, 4], [5, 6]])

# Reshape the tensor to shape (2, 3)
reshaped_tensor = tf.reshape(tensor, (2, 3))

Slicing

# Create a tensor
tensor = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Slice tensor to extract sub-tensor from index (0, 1) of size (1, 2)
sliced_tensor = tf.slice(tensor, begin=(0, 1), size=(1, 2))

# Slice tensor to extract sub-tensor from index (1, 0) of size (2, 2)
sliced_tensor = tf.slice(tensor, (1, 0), (2, 2))

Modifizieren mit Slicing

# Create a tensor
tensor = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# Change the entire first row 
tensor[0, :].assign([0, 0, 0])

# Modify the second and the third columns 
tensor[:, 1:3].assign(tf.fill((3,2), 1))

Konkatenation

# Create two tensors
tensor1 = tf.constant([[1, 2, 3], [4, 5, 6]])
tensor2 = tf.constant([[7, 8, 9]])

# Concatenate tensors vertically (along rows)
concatenated_tensor = tf.concat([tensor1, tensor2], axis=0)

# Concatenate tensors horizontally (along columns)
concatenated_tensor = tf.concat([tensor3, tensor4], axis=1)

Reduktionsoperationen

# Calculate sum of all elements
total_sum = tf.reduce_sum(tensor)

# Calculate mean of all elements
mean_val = tf.reduce_mean(tensor)

# Determine the maximum value
max_val = tf.reduce_max(tensor)

# Find the minimum value
min_val = tf.reduce_min(tensor)

Gradient Tape

# Define input variables
x = tf.Variable(tf.fill((2, 3), 3.0))
z = tf.Variable(5.0)

# Start recording the operations
with tf.GradientTape() as tape:
    # Define the calculations
    y = tf.reduce_sum(x * x + 2 * z)
    
# Extract the gradient for the specific inputs (x and z)
grad = tape.gradient(y, [x, z])

print(f"The gradient of y with respect to x is:\n{grad[0].numpy()}")
print(f"The gradient of y with respect to z is: {grad[1].numpy()}")

@tf.function

@tf.function
def compute_gradient_conditional(x):
    with tf.GradientTape() as tape:
        if tf.reduce_sum(x) > 0:
            y = x * x
        else:
            y = x * x * x
    return tape.gradient(y, x)

x = tf.constant([-2.0, 2.0])
grad = compute_gradient_conditional(x)
print(f"The gradient at x = {x.numpy()} is {grad.numpy()}")
question mark

Welche Rolle spielt eine Verlustfunktion in einem neuronalen Netzwerk?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
some-alt