Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Visualizing and Logging Metrics | Monitoring and Continuous Delivery
MLOps for Machine Learning Engineers

bookVisualizing and Logging Metrics

123456789101112131415161718192021
import matplotlib.pyplot as plt import numpy as np # Simulate model metric logging over 12 weeks weeks = np.arange(1, 13) accuracy = np.array([0.89, 0.90, 0.91, 0.91, 0.92, 0.91, 0.90, 0.89, 0.87, 0.85, 0.86, 0.86]) precision = np.array([0.88, 0.88, 0.89, 0.90, 0.89, 0.89, 0.88, 0.87, 0.86, 0.84, 0.85, 0.85]) recall = np.array([0.87, 0.88, 0.90, 0.89, 0.91, 0.90, 0.88, 0.86, 0.85, 0.83, 0.84, 0.84]) plt.figure(figsize=(10, 6)) plt.plot(weeks, accuracy, marker='o', label='Accuracy') plt.plot(weeks, precision, marker='s', label='Precision') plt.plot(weeks, recall, marker='^', label='Recall') plt.axhline(0.88, color='red', linestyle='--', label='Alert Threshold') plt.title('Model Metrics Over Time') plt.xlabel('Week') plt.ylabel('Metric Value') plt.ylim(0.8, 1.0) plt.legend() plt.grid(True) plt.show()
copy

When you monitor model metrics such as accuracy, precision, and recall over time, you gain insight into your model's ongoing performance. Consistent values suggest stable behavior, while noticeable drops—especially below a predefined threshold—can signal underlying issues. A sudden decline in accuracy, for instance, may indicate data drift, changes in user behavior, or upstream data quality problems.

To proactively maintain model reliability, you should set up alerts that trigger when metrics fall below critical thresholds. These alerts can be as simple as email notifications or as sophisticated as automated retraining jobs. The key is to respond quickly to performance changes, minimizing any negative impact on users or business outcomes.

Note
Note

Monitoring should include both model and data quality metrics.

question mark

Why is it important to monitor both model and data quality metrics in production machine learning systems?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 3

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain what causes drops in these metrics?

How do I choose an appropriate alert threshold?

What actions should I take if an alert is triggered?

Awesome!

Completion rate improved to 6.25

bookVisualizing and Logging Metrics

Swipe um das Menü anzuzeigen

123456789101112131415161718192021
import matplotlib.pyplot as plt import numpy as np # Simulate model metric logging over 12 weeks weeks = np.arange(1, 13) accuracy = np.array([0.89, 0.90, 0.91, 0.91, 0.92, 0.91, 0.90, 0.89, 0.87, 0.85, 0.86, 0.86]) precision = np.array([0.88, 0.88, 0.89, 0.90, 0.89, 0.89, 0.88, 0.87, 0.86, 0.84, 0.85, 0.85]) recall = np.array([0.87, 0.88, 0.90, 0.89, 0.91, 0.90, 0.88, 0.86, 0.85, 0.83, 0.84, 0.84]) plt.figure(figsize=(10, 6)) plt.plot(weeks, accuracy, marker='o', label='Accuracy') plt.plot(weeks, precision, marker='s', label='Precision') plt.plot(weeks, recall, marker='^', label='Recall') plt.axhline(0.88, color='red', linestyle='--', label='Alert Threshold') plt.title('Model Metrics Over Time') plt.xlabel('Week') plt.ylabel('Metric Value') plt.ylim(0.8, 1.0) plt.legend() plt.grid(True) plt.show()
copy

When you monitor model metrics such as accuracy, precision, and recall over time, you gain insight into your model's ongoing performance. Consistent values suggest stable behavior, while noticeable drops—especially below a predefined threshold—can signal underlying issues. A sudden decline in accuracy, for instance, may indicate data drift, changes in user behavior, or upstream data quality problems.

To proactively maintain model reliability, you should set up alerts that trigger when metrics fall below critical thresholds. These alerts can be as simple as email notifications or as sophisticated as automated retraining jobs. The key is to respond quickly to performance changes, minimizing any negative impact on users or business outcomes.

Note
Note

Monitoring should include both model and data quality metrics.

question mark

Why is it important to monitor both model and data quality metrics in production machine learning systems?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 3
some-alt