Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Build a Custom Candlestick Plot | Visualizing Market Trends and Indicators
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Traders

bookChallenge: Build a Custom Candlestick Plot

In this challenge, you will use matplotlib to create a custom candlestick chart from a hardcoded DataFrame containing OHLC (open, high, low, close) data for seven days. Candlestick charts are essential tools for traders, offering a clear visual representation of price movements and patterns over time. Each "candle" shows the open and close prices as well as the high and low for each trading period, helping you quickly spot bullish and bearish trends. Your goal is to plot each candle in green if the close is higher than the open (bullish) and in red if the close is lower than the open (bearish). Additionally, you will annotate the chart with the highest high and the lowest low values to highlight significant price levels.

123456789101112131415161718192021222324252627282930313233343536373839404142434445
import pandas as pd import matplotlib.pyplot as plt # Hardcoded OHLC data for 7 days data = { "Date": pd.date_range("2024-06-01", periods=7, freq="D"), "Open": [100, 102, 101, 103, 102, 105, 104], "High": [105, 104, 103, 106, 107, 108, 107], "Low": [99, 100, 100, 102, 101, 104, 103], "Close": [104, 101, 103, 105, 106, 106, 104], } df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(10, 6)) width = 0.6 # width of the candlestick body for idx, row in df.iterrows(): color = "green" if row["Close"] >= row["Open"] else "red" # Draw the wick (high-low line) ax.plot([idx, idx], [row["Low"], row["High"]], color="black", linewidth=1) # Draw the candle body (open-close rectangle) lower = min(row["Open"], row["Close"]) height = abs(row["Close"] - row["Open"]) rect = plt.Rectangle((idx - width/2, lower), width, height or 0.1, color=color, alpha=0.8) ax.add_patch(rect) # Annotate highest high and lowest low highest_high = df["High"].max() highest_idx = df["High"].idxmax() ax.annotate(f"High: {highest_high}", xy=(highest_idx, highest_high), xytext=(highest_idx, highest_high+0.5), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') lowest_low = df["Low"].min() lowest_idx = df["Low"].idxmin() ax.annotate(f"Low: {lowest_low}", xy=(lowest_idx, lowest_low), xytext=(lowest_idx, lowest_low-1), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') # Formatting the x-axis with dates ax.set_xticks(range(len(df))) ax.set_xticklabels(df["Date"].dt.strftime("%b %d"), rotation=45) ax.set_title("Custom Candlestick Chart") ax.set_xlabel("Date") ax.set_ylabel("Price") plt.tight_layout() plt.show()
copy
Note
Note

Candlestick charts are widely used in technical analysis because they provide more information than simple line charts. By visualizing the relationship between open, close, high, and low prices, you can quickly identify market sentiment and potential reversal points.

For more on candlestick charting techniques, consider reading "Japanese Candlestick Charting Techniques" by Steve Nison.

Aufgabe

Swipe to start coding

Plot a candlestick chart using the provided DataFrame, following these steps:

  • Draw each candlestick with rectangles and lines using matplotlib.
  • Color each candle body green if close >= open, or red if close < open.
  • Annotate the chart with the highest high and lowest low values using ax.annotate.
  • Format the x-axis to display the dates from the DataFrame.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain how candlestick charts help identify bullish and bearish trends?

What do the annotations for the highest high and lowest low represent on the chart?

Can you walk me through how the code determines the color of each candlestick?

close

bookChallenge: Build a Custom Candlestick Plot

Swipe um das Menü anzuzeigen

In this challenge, you will use matplotlib to create a custom candlestick chart from a hardcoded DataFrame containing OHLC (open, high, low, close) data for seven days. Candlestick charts are essential tools for traders, offering a clear visual representation of price movements and patterns over time. Each "candle" shows the open and close prices as well as the high and low for each trading period, helping you quickly spot bullish and bearish trends. Your goal is to plot each candle in green if the close is higher than the open (bullish) and in red if the close is lower than the open (bearish). Additionally, you will annotate the chart with the highest high and the lowest low values to highlight significant price levels.

123456789101112131415161718192021222324252627282930313233343536373839404142434445
import pandas as pd import matplotlib.pyplot as plt # Hardcoded OHLC data for 7 days data = { "Date": pd.date_range("2024-06-01", periods=7, freq="D"), "Open": [100, 102, 101, 103, 102, 105, 104], "High": [105, 104, 103, 106, 107, 108, 107], "Low": [99, 100, 100, 102, 101, 104, 103], "Close": [104, 101, 103, 105, 106, 106, 104], } df = pd.DataFrame(data) fig, ax = plt.subplots(figsize=(10, 6)) width = 0.6 # width of the candlestick body for idx, row in df.iterrows(): color = "green" if row["Close"] >= row["Open"] else "red" # Draw the wick (high-low line) ax.plot([idx, idx], [row["Low"], row["High"]], color="black", linewidth=1) # Draw the candle body (open-close rectangle) lower = min(row["Open"], row["Close"]) height = abs(row["Close"] - row["Open"]) rect = plt.Rectangle((idx - width/2, lower), width, height or 0.1, color=color, alpha=0.8) ax.add_patch(rect) # Annotate highest high and lowest low highest_high = df["High"].max() highest_idx = df["High"].idxmax() ax.annotate(f"High: {highest_high}", xy=(highest_idx, highest_high), xytext=(highest_idx, highest_high+0.5), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') lowest_low = df["Low"].min() lowest_idx = df["Low"].idxmin() ax.annotate(f"Low: {lowest_low}", xy=(lowest_idx, lowest_low), xytext=(lowest_idx, lowest_low-1), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', color='blue') # Formatting the x-axis with dates ax.set_xticks(range(len(df))) ax.set_xticklabels(df["Date"].dt.strftime("%b %d"), rotation=45) ax.set_title("Custom Candlestick Chart") ax.set_xlabel("Date") ax.set_ylabel("Price") plt.tight_layout() plt.show()
copy
Note
Note

Candlestick charts are widely used in technical analysis because they provide more information than simple line charts. By visualizing the relationship between open, close, high, and low prices, you can quickly identify market sentiment and potential reversal points.

For more on candlestick charting techniques, consider reading "Japanese Candlestick Charting Techniques" by Steve Nison.

Aufgabe

Swipe to start coding

Plot a candlestick chart using the provided DataFrame, following these steps:

  • Draw each candlestick with rectangles and lines using matplotlib.
  • Color each candle body green if close >= open, or red if close < open.
  • Annotate the chart with the highest high and lowest low values using ax.annotate.
  • Format the x-axis to display the dates from the DataFrame.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
single

single

some-alt