Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Understanding Numerical Data Types in Python | Getting Familiar With Numbers in Python
Data Types in Python
course content

Kursinhalt

Data Types in Python

Data Types in Python

1. Getting Familiar With Numbers in Python
2. Mastering Boolean Logic in Python
3. Python String Manipulation
4. Bring All the Topics Together

book
Understanding Numerical Data Types in Python

Before diving into Python programming, it's crucial to understand numeric data types, as they are fundamental to many operations.

Python provides two primary numeric data types: integers (int) and floating-point numbers (float). These types are built-in, meaning Python can handle them directly without any additional setup. An integer is a numeric data type representing whole numbers without any decimal points, such as 1, 2, or 456566. A float is a numeric data type representing decimal numbers, like pi (3.14159265359) or Euler's number (2.71828).

Integer represents whole numbers you commonly encounter in your daily life, such as 1, 2, 45, or 456566.

On the other hand, floating numbers include values like pi (3.14159265359) and Euler's number (2.71828).

python
question mark

Select all correct statements about numeric data types in Python:

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 1
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt