Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Visualizing Time Series Components | Foundations of Time Series Analysis
Time Series Forecasting with ARIMA

bookChallenge: Visualizing Time Series Components

Aufgabe

Swipe to start coding

Your goal is to decompose a time series into its componentstrend, seasonality, and residuals — using the seasonal_decompose() function from statsmodels.

  1. Load the built-in "flights" dataset from seaborn.
  2. Extract the "passengers" column as your target time series.
  3. Apply seasonal_decompose() with an additive model and a period of 12 (months).
  4. Store the result in a variable called decomposition.
  5. Plot the original series, trend, seasonal, and residual components.

seasonal_decompose(series, model="additive", period=12) automatically splits the time series into four parts:

  • trend → long-term movement;
  • seasonal → repeating patterns;
  • resid → random noise;
  • observed → original data.

Each component can be accessed with attributes like .trend, .seasonal, .resid.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.67

bookChallenge: Visualizing Time Series Components

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

Your goal is to decompose a time series into its componentstrend, seasonality, and residuals — using the seasonal_decompose() function from statsmodels.

  1. Load the built-in "flights" dataset from seaborn.
  2. Extract the "passengers" column as your target time series.
  3. Apply seasonal_decompose() with an additive model and a period of 12 (months).
  4. Store the result in a variable called decomposition.
  5. Plot the original series, trend, seasonal, and residual components.

seasonal_decompose(series, model="additive", period=12) automatically splits the time series into four parts:

  • trend → long-term movement;
  • seasonal → repeating patterns;
  • resid → random noise;
  • observed → original data.

Each component can be accessed with attributes like .trend, .seasonal, .resid.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 4
single

single

some-alt