Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: ARIMA Forecasting and Evaluation | Implementing ARIMA for Forecasting
Time Series Forecasting with ARIMA

bookChallenge: ARIMA Forecasting and Evaluation

Aufgabe

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me an example?

close

Awesome!

Completion rate improved to 6.67

bookChallenge: ARIMA Forecasting and Evaluation

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 4
single

single

some-alt