Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Clean Sales Data | Business Data Manipulation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Business Analysts

bookChallenge: Clean Sales Data

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Aufgabe

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Clean Sales Data

Swipe um das Menü anzuzeigen

Data cleaning is a foundational step in business data analysis. Without careful cleaning, your analyses may be skewed by missing values or inconsistent formatting, leading to inaccurate insights and decisions. For business analysts, ensuring that sales records are complete and standardized—such as by filling in missing sales numbers and making product names consistent—is essential for producing reliable reports and recommendations. Small inconsistencies, like varying capitalization or blank fields, can have a significant impact when aggregating or comparing data across products and periods. By mastering these cleaning techniques, you set the stage for more advanced analysis and trustworthy business intelligence.

Aufgabe

Swipe to start coding

You are given a list of sales records, each as a dictionary with keys 'date', 'product', 'units_sold', and 'revenue'. Some records may have missing values (None) for 'units_sold' or 'revenue', and product names may use inconsistent capitalization. Your function must:

  • Replace any missing 'units_sold' or 'revenue' values with 0.
  • Standardize all 'product' names to title case (first letter uppercase, others lowercase).
  • Return a new list of cleaned records.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 3
single

single

some-alt