Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: L2 Normalization and Norm Comparison | Normalization Techniques
Feature Scaling and Normalization Deep Dive

bookChallenge: L2 Normalization and Norm Comparison

Aufgabe

Swipe to start coding

You are given a NumPy array X of shape (n_samples, n_features). Your goal is to L2-normalize each row (sample) and compare norms before and after normalization using np.linalg.norm.

  1. Compute row-wise L2 norms as a column vector row_norms with shape (n_samples, 1) using np.linalg.norm(..., axis=1, keepdims=True).
  2. Create X_l2 by dividing each row of X by its L2 norm via broadcasting.
  3. Compute norms_before and norms_after as 1D arrays (shape (n_samples,)) with np.linalg.norm(..., axis=1).
  4. Assume there are no zero rows in X. Do not modify X in place. Use vectorized NumPy operations.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are the next steps I should take?

Can you provide an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: L2 Normalization and Norm Comparison

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You are given a NumPy array X of shape (n_samples, n_features). Your goal is to L2-normalize each row (sample) and compare norms before and after normalization using np.linalg.norm.

  1. Compute row-wise L2 norms as a column vector row_norms with shape (n_samples, 1) using np.linalg.norm(..., axis=1, keepdims=True).
  2. Create X_l2 by dividing each row of X by its L2 norm via broadcasting.
  3. Compute norms_before and norms_after as 1D arrays (shape (n_samples,)) with np.linalg.norm(..., axis=1).
  4. Assume there are no zero rows in X. Do not modify X in place. Use vectorized NumPy operations.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

some-alt