Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Parallel Algorithms | Advanced Concurrency Techniques
C++ Concurrency and Multithreading

bookParallel Algorithms

Modern C++ offers robust tools for writing concurrent and parallel code, enabling efficient use of multicore processors for better performance.

Since C++17, the Standard Library includes parallel algorithms like std::for_each, which can run in parallel using execution policies. This lets you write high-level, thread-aware code without managing threads directly.

main.cpp

main.cpp

copy
1234567891011121314151617181920
#include <iostream> #include <vector> #include <algorithm> #include <execution> int main() { std::vector<int> data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Process each element in parallel: double each value std::for_each(std::execution::par, data.begin(), data.end(), [](int& n) { n *= 2; }); std::cout << "Processed data: "; for (const auto& n : data) std::cout << n << " "; std::cout << std::endl; }

Performance

Parallel algorithms can greatly speed up large data processing by distributing work across multiple CPU cores. Sequential algorithms handle elements one at a time and don’t use multiple cores.

Determinism

Parallel execution can cause non-deterministic operation order, which may affect results if operations depend on each other. Sequential algorithms process elements in order, ensuring deterministic results.

question mark

Which scenario is best suited for using a parallel algorithm like std::for_each with std::execution::par?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 3

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

bookParallel Algorithms

Swipe um das Menü anzuzeigen

Modern C++ offers robust tools for writing concurrent and parallel code, enabling efficient use of multicore processors for better performance.

Since C++17, the Standard Library includes parallel algorithms like std::for_each, which can run in parallel using execution policies. This lets you write high-level, thread-aware code without managing threads directly.

main.cpp

main.cpp

copy
1234567891011121314151617181920
#include <iostream> #include <vector> #include <algorithm> #include <execution> int main() { std::vector<int> data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // Process each element in parallel: double each value std::for_each(std::execution::par, data.begin(), data.end(), [](int& n) { n *= 2; }); std::cout << "Processed data: "; for (const auto& n : data) std::cout << n << " "; std::cout << std::endl; }

Performance

Parallel algorithms can greatly speed up large data processing by distributing work across multiple CPU cores. Sequential algorithms handle elements one at a time and don’t use multiple cores.

Determinism

Parallel execution can cause non-deterministic operation order, which may affect results if operations depend on each other. Sequential algorithms process elements in order, ensuring deterministic results.

question mark

Which scenario is best suited for using a parallel algorithm like std::for_each with std::execution::par?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 3
some-alt