Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Simulate Projectile Motion | Dynamics and System Simulation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Mechanical Engineers

bookChallenge: Simulate Projectile Motion

Simulating projectile motion is a classic dynamics problem. Automating this with Python helps visualize and analyze trajectories. By modeling a projectile launched at an angle with a given initial velocity, you can predict its path using fundamental physics equations. This approach is valuable for understanding motion, optimizing launch parameters, and visualizing results for engineering applications.

Aufgabe

Swipe to start coding

Implement a function that simulates the 2D trajectory of a projectile. The function should:

  • Accept initial velocity (v0), launch angle in degrees (angle_deg), and time step (dt) as arguments.
  • Calculate the x and y positions at each time increment until the projectile lands (when y becomes negative).
  • Return two lists: one for all x positions and one for all y positions.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Simulate Projectile Motion

Swipe um das Menü anzuzeigen

Simulating projectile motion is a classic dynamics problem. Automating this with Python helps visualize and analyze trajectories. By modeling a projectile launched at an angle with a given initial velocity, you can predict its path using fundamental physics equations. This approach is valuable for understanding motion, optimizing launch parameters, and visualizing results for engineering applications.

Aufgabe

Swipe to start coding

Implement a function that simulates the 2D trajectory of a projectile. The function should:

  • Accept initial velocity (v0), launch angle in degrees (angle_deg), and time step (dt) as arguments.
  • Calculate the x and y positions at each time increment until the projectile lands (when y becomes negative).
  • Return two lists: one for all x positions and one for all y positions.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 3
single

single

some-alt