Challenge: Preprocessing Pipeline
Swipe to start coding
You are given the Titanic dataset from the seaborn library.
Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.
Follow these steps:
- Load the dataset using
sns.load_dataset("titanic"). - Handle missing values:
- Numeric columns → fill with mean.
- Categorical columns → fill with mode.
- Encode the categorical features
sexandembarkedusingpd.get_dummies(). - Scale numeric columns
ageandfareusingStandardScaler. - Create a new feature
family_size = sibsp + parch + 1. - Combine all transformations into a function called
preprocess_titanic(data)that returns the final processed DataFrame. - Assign the processed dataset to a variable called
processed_data.
Print the first 5 rows of the final DataFrame.
Lösung
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Großartig!
Completion Rate verbessert auf 8.33
Challenge: Preprocessing Pipeline
Swipe um das Menü anzuzeigen
Swipe to start coding
You are given the Titanic dataset from the seaborn library.
Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.
Follow these steps:
- Load the dataset using
sns.load_dataset("titanic"). - Handle missing values:
- Numeric columns → fill with mean.
- Categorical columns → fill with mode.
- Encode the categorical features
sexandembarkedusingpd.get_dummies(). - Scale numeric columns
ageandfareusingStandardScaler. - Create a new feature
family_size = sibsp + parch + 1. - Combine all transformations into a function called
preprocess_titanic(data)that returns the final processed DataFrame. - Assign the processed dataset to a variable called
processed_data.
Print the first 5 rows of the final DataFrame.
Lösung
Danke für Ihr Feedback!
single