Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Implement and Compare Root-Finding Methods | Core Numerical Algorithms
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: Implement and Compare Root-Finding Methods

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Aufgabe

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Implement and Compare Root-Finding Methods

Swipe um das Menü anzuzeigen

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Aufgabe

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

some-alt