Challenge: Regression Metrics
Aufgabe
Swipe to start coding
You are given a linear regression task using the diabetes dataset from scikit-learn.
Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.
Perform the following steps:
- Load the
diabetesdataset. - Split the data into training and testing sets.
- Train a Linear Regression model.
- Predict on the test set and compute:
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R² Score
- Perform 5-fold cross-validation using the model.
Use
scoring="r2"as the estimator for cross-validation. - Print all metrics in a readable format.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 4
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 6.25
Challenge: Regression Metrics
Swipe um das Menü anzuzeigen
Aufgabe
Swipe to start coding
You are given a linear regression task using the diabetes dataset from scikit-learn.
Your goal is to train a model, compute key regression evaluation metrics, and validate the model using cross-validation.
Perform the following steps:
- Load the
diabetesdataset. - Split the data into training and testing sets.
- Train a Linear Regression model.
- Predict on the test set and compute:
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R² Score
- Perform 5-fold cross-validation using the model.
Use
scoring="r2"as the estimator for cross-validation. - Print all metrics in a readable format.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 4
single