Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Apply Validation Rules to Employee Records | Data Quality Essentials
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Working with Text, Dates, and Data Cleaning in R

bookChallenge: Apply Validation Rules to Employee Records

Tarea

Swipe to start coding

Apply data validation rules to an employee records data frame to ensure data integrity.

  • Correct any ages that fall outside the range 18 to 65 by setting them to the nearest valid value.
  • Ensure all employee_id values are unique, modifying duplicates by appending a suffix.
  • Set email values that do not have a valid format (must contain both "@" and ".") to NA.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 6
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

bookChallenge: Apply Validation Rules to Employee Records

Desliza para mostrar el menú

Tarea

Swipe to start coding

Apply data validation rules to an employee records data frame to ensure data integrity.

  • Correct any ages that fall outside the range 18 to 65 by setting them to the nearest valid value.
  • Ensure all employee_id values are unique, modifying duplicates by appending a suffix.
  • Set email values that do not have a valid format (must contain both "@" and ".") to NA.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 6
single

single

some-alt