Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Isolation Forest Implementation | Isolation-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: Isolation Forest Implementation

Tarea

Swipe to start coding

You are given a 2D dataset containing normal points and a few outliers. Your goal is to train an Isolation Forest model to detect anomalies, compute anomaly scores, and flag potential outliers.

Steps:

  1. Import and initialize IsolationForest from sklearn.ensemble.
  2. Fit the model on the dataset X.
  3. Compute anomaly scores using decision_function(X).
  4. Predict labels using .predict(X) — note:
    • 1 → inlier
    • -1 → outlier
  5. Print the number of detected outliers and show example scores.
  6. Use parameters: contamination=0.15, random_state=42, and n_estimators=100.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 4.55

bookChallenge: Isolation Forest Implementation

Desliza para mostrar el menú

Tarea

Swipe to start coding

You are given a 2D dataset containing normal points and a few outliers. Your goal is to train an Isolation Forest model to detect anomalies, compute anomaly scores, and flag potential outliers.

Steps:

  1. Import and initialize IsolationForest from sklearn.ensemble.
  2. Fit the model on the dataset X.
  3. Compute anomaly scores using decision_function(X).
  4. Predict labels using .predict(X) — note:
    • 1 → inlier
    • -1 → outlier
  5. Print the number of detected outliers and show example scores.
  6. Use parameters: contamination=0.15, random_state=42, and n_estimators=100.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

some-alt