Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Predict Ozone Levels | Modeling and Predicting Environmental Phenomena
Python for Environmental Science

bookChallenge: Predict Ozone Levels

In environmental science, predicting air quality indicators such as ozone levels is crucial for understanding pollution dynamics and informing public health decisions. You will use a simple linear regression model to predict ozone levels based on temperature data, a common approach for exploring how weather conditions relate to air pollution.

Begin by importing the necessary libraries and preparing your data. You have a small dataset of daily temperature and ozone measurements, which allows you to practice building and evaluating a predictive model.

Tarea

Swipe to start coding

Fit a linear regression model using scikit-learn to predict ozone levels from temperature, using this DataFrame:

  • Use the provided pandas DataFrame with columns temperature and ozone.
  • Fit a linear regression model (LinearRegression) to predict ozone from temperature.
  • Store the fitted model as model.
  • Predict ozone values for the input data and store them in y_pred.
  • Calculate and print the mean squared error (MSE) and R² score of the predictions.
  • Plot a scatter plot of the data and overlay the regression line.

The DataFrame is:

import pandas as pd
df = pd.DataFrame({
    "temperature": [22, 25, 27, 23, 28, 30, 26, 29, 31, 24, 32, 33, 21, 20, 19],
    "ozone": [34, 44, 49, 37, 51, 60, 46, 55, 62, 39, 65, 67, 30, 28, 25]
})

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

What are the necessary libraries I need to import for this task?

Can you show me how to prepare the temperature and ozone data for modeling?

How do I load and view the sample dataset?

close

bookChallenge: Predict Ozone Levels

Desliza para mostrar el menú

In environmental science, predicting air quality indicators such as ozone levels is crucial for understanding pollution dynamics and informing public health decisions. You will use a simple linear regression model to predict ozone levels based on temperature data, a common approach for exploring how weather conditions relate to air pollution.

Begin by importing the necessary libraries and preparing your data. You have a small dataset of daily temperature and ozone measurements, which allows you to practice building and evaluating a predictive model.

Tarea

Swipe to start coding

Fit a linear regression model using scikit-learn to predict ozone levels from temperature, using this DataFrame:

  • Use the provided pandas DataFrame with columns temperature and ozone.
  • Fit a linear regression model (LinearRegression) to predict ozone from temperature.
  • Store the fitted model as model.
  • Predict ozone values for the input data and store them in y_pred.
  • Calculate and print the mean squared error (MSE) and R² score of the predictions.
  • Plot a scatter plot of the data and overlay the regression line.

The DataFrame is:

import pandas as pd
df = pd.DataFrame({
    "temperature": [22, 25, 27, 23, 28, 30, 26, 29, 31, 24, 32, 33, 21, 20, 19],
    "ozone": [34, 44, 49, 37, 51, 60, 46, 55, 62, 39, 65, 67, 30, 28, 25]
})

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
single

single

some-alt