Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Visualize Automated Metrics | Automating Product Management Workflows
Python for Product Managers

bookChallenge: Visualize Automated Metrics

As a product manager, you often need to present a snapshot of key product metrics—such as feature adoption rates, churn, and daily active users (DAU)—in a clear, visual format. Python, combined with the matplotlib library, enables you to quickly generate summary charts that can be embedded in reports or shared with stakeholders. Recapping what you have learned so far, visualizing multiple metrics in a single chart helps you compare trends at a glance and communicate results effectively. Saving these charts as image files ensures you have ready-to-use visuals for product documentation or presentations.

12345678910111213141516171819202122232425262728293031
import matplotlib.pyplot as plt # Hardcoded product metrics metrics = { "Feature Adoption Rate": 0.67, "Churn Rate": 0.13, "DAU": 3200 } # Prepare data for the bar chart labels = list(metrics.keys()) values = list(metrics.values()) # Create the bar chart plt.figure(figsize=(8, 5)) bars = plt.bar(labels, values, color=['skyblue', 'salmon', 'lightgreen']) # Add labels and title plt.ylabel("Value") plt.title("Product Metrics Overview") # Add value labels above bars for bar in bars: height = bar.get_height() plt.annotate(f"{height}", xy=(bar.get_x() + bar.get_width() / 2, height), xytext=(0, 3), textcoords="offset points", ha='center', va='bottom') # Save the chart as an image file plt.tight_layout() plt.savefig("product_metrics_overview.png") plt.close()
copy
Tarea

Swipe to start coding

Write a script that visualizes and saves a summary chart of product metrics. You will use a dictionary of metrics with three key metrics: "Feature Adoption Rate", "Churn Rate", and "DAU".

  • Create a bar chart where each bar represents one of the metrics.
  • Add axis labels and a chart title.
  • Display the value of each metric above its respective bar.
  • Save the chart as an image file named "summary_product_metrics.png".

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 7
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Visualize Automated Metrics

Desliza para mostrar el menú

As a product manager, you often need to present a snapshot of key product metrics—such as feature adoption rates, churn, and daily active users (DAU)—in a clear, visual format. Python, combined with the matplotlib library, enables you to quickly generate summary charts that can be embedded in reports or shared with stakeholders. Recapping what you have learned so far, visualizing multiple metrics in a single chart helps you compare trends at a glance and communicate results effectively. Saving these charts as image files ensures you have ready-to-use visuals for product documentation or presentations.

12345678910111213141516171819202122232425262728293031
import matplotlib.pyplot as plt # Hardcoded product metrics metrics = { "Feature Adoption Rate": 0.67, "Churn Rate": 0.13, "DAU": 3200 } # Prepare data for the bar chart labels = list(metrics.keys()) values = list(metrics.values()) # Create the bar chart plt.figure(figsize=(8, 5)) bars = plt.bar(labels, values, color=['skyblue', 'salmon', 'lightgreen']) # Add labels and title plt.ylabel("Value") plt.title("Product Metrics Overview") # Add value labels above bars for bar in bars: height = bar.get_height() plt.annotate(f"{height}", xy=(bar.get_x() + bar.get_width() / 2, height), xytext=(0, 3), textcoords="offset points", ha='center', va='bottom') # Save the chart as an image file plt.tight_layout() plt.savefig("product_metrics_overview.png") plt.close()
copy
Tarea

Swipe to start coding

Write a script that visualizes and saves a summary chart of product metrics. You will use a dictionary of metrics with three key metrics: "Feature Adoption Rate", "Churn Rate", and "DAU".

  • Create a bar chart where each bar represents one of the metrics.
  • Add axis labels and a chart title.
  • Display the value of each metric above its respective bar.
  • Save the chart as an image file named "summary_product_metrics.png".

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 7
single

single

some-alt