Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Visualize Feature Impact | Product Experimentation and Hypothesis Testing
Python for Product Managers

bookChallenge: Visualize Feature Impact

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Tarea

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 7
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain how to interpret the chart produced by this code?

What other types of visualizations could I use for before-and-after comparisons?

How can I customize the chart to match my company's branding?

close

bookChallenge: Visualize Feature Impact

Desliza para mostrar el menú

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Tarea

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 7
single

single

some-alt