Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Impute Missing Values with Mean | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Impute Missing Values with Mean

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Tarea

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Impute Missing Values with Mean

Desliza para mostrar el menú

Mean imputation is a straightforward technique for handling missing values in numerical data. You replace each missing value in a column with the mean of the non-missing values from that same column. This method is most appropriate when the data is missing at random and the distribution of values is not heavily skewed. However, mean imputation can distort the variance and relationships in your data, especially if many values are missing or if the data is not normally distributed. It is important to consider these limitations before choosing mean imputation for your data cleaning workflow.

123456789
import pandas as pd import numpy as np data = { "id": [1, 2, 3, 4, 5], "score": [85, np.nan, 78, np.nan, 92] } df = pd.DataFrame(data) print(df)
copy
Tarea

Swipe to start coding

Write a function that fills missing values in a specified numerical column of a DataFrame with the mean of that column. The function must return the modified DataFrame with all missing values in the specified column replaced by the mean of the non-missing values.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
single

single

some-alt