Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Standardize Categorical Values | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Standardize Categorical Values

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Tarea

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

How can I standardize the values in the 'Response' column?

Why is it important to clean categorical data before analysis?

Can you show me how to count the number of 'Yes' and 'No' responses after standardizing?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Standardize Categorical Values

Desliza para mostrar el menú

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Tarea

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
single

single

some-alt