Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Remove Whitespace from Strings | Foundations of Data Cleaning
Python for Data Cleaning

bookChallenge: Remove Whitespace from Strings

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Tarea

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Remove Whitespace from Strings

Desliza para mostrar el menú

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Tarea

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
single

single

some-alt