Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Implement Negative Selection Algorithm | Artificial Immune Systems
Bio-Inspired Algorithms

bookChallenge: Implement Negative Selection Algorithm

Tarea

Swipe to start coding

In this challenge, you will implement a basic negative selection algorithm (NSA) for anomaly detection.
This algorithm is inspired by the human immune system, which learns to distinguish between self (normal) and non-self (foreign) patterns.

You are given a list of self_patterns representing normal data.
Your task is to implement two core functions:

  1. Generate detectors: in the generate_detectors function, you must:
    • Generate random candidate patterns.
    • Check if the candidate pattern is in the self_set.
    • Only add the candidate to the detectors set if it is not a "self" pattern.
  2. Classify patterns: in the classify_patterns function, you must:
    • Check each pattern from the test_patterns list.
    • If the pattern is in the self_set, classify it as 'self'.
    • Else, if the pattern is in the detector_set, classify it as 'non-self'.
    • Otherwise (if it is not "self" and not in the generated detector list), classify it as 'non-self'.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Implement Negative Selection Algorithm

Desliza para mostrar el menú

Tarea

Swipe to start coding

In this challenge, you will implement a basic negative selection algorithm (NSA) for anomaly detection.
This algorithm is inspired by the human immune system, which learns to distinguish between self (normal) and non-self (foreign) patterns.

You are given a list of self_patterns representing normal data.
Your task is to implement two core functions:

  1. Generate detectors: in the generate_detectors function, you must:
    • Generate random candidate patterns.
    • Check if the candidate pattern is in the self_set.
    • Only add the candidate to the detectors set if it is not a "self" pattern.
  2. Classify patterns: in the classify_patterns function, you must:
    • Check each pattern from the test_patterns list.
    • If the pattern is in the self_set, classify it as 'self'.
    • Else, if the pattern is in the detector_set, classify it as 'non-self'.
    • Otherwise (if it is not "self" and not in the generated detector list), classify it as 'non-self'.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 4
single

single

some-alt