Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Calculating Sum of Geometric Progression | Basic Mathematical Concepts and Definitions
Mathematics for Data Analysis and Modeling
course content

Contenido del Curso

Mathematics for Data Analysis and Modeling

Mathematics for Data Analysis and Modeling

1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
3. Mathematical Analysis

bookChallenge: Calculating Sum of Geometric Progression

In the previous chapter, we discovered a formula to calculate the sum of elements of an arithmetic progression. There is also a formula for the sum of a geometric progression:

Let's discover the following real-life case: consider a scenario where a population of bacteria doubles every hour. The initial population is 100 bacteria. We might want to calculate the total population after a certain number of hours. This scenario can be modeled as a geometric progression, where each term represents the population at a specific hour, and the common ratio r is 2 (since the population doubles each hour).

Tarea
test

Swipe to show code editor

Calculate the sum of first n elements of geometric progression using both for loop and the formula described above.

  1. Specify the arguments of the formula.
  2. Specify parameters of for loop.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 4
toggle bottom row

bookChallenge: Calculating Sum of Geometric Progression

In the previous chapter, we discovered a formula to calculate the sum of elements of an arithmetic progression. There is also a formula for the sum of a geometric progression:

Let's discover the following real-life case: consider a scenario where a population of bacteria doubles every hour. The initial population is 100 bacteria. We might want to calculate the total population after a certain number of hours. This scenario can be modeled as a geometric progression, where each term represents the population at a specific hour, and the common ratio r is 2 (since the population doubles each hour).

Tarea
test

Swipe to show code editor

Calculate the sum of first n elements of geometric progression using both for loop and the formula described above.

  1. Specify the arguments of the formula.
  2. Specify parameters of for loop.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 4
toggle bottom row

bookChallenge: Calculating Sum of Geometric Progression

In the previous chapter, we discovered a formula to calculate the sum of elements of an arithmetic progression. There is also a formula for the sum of a geometric progression:

Let's discover the following real-life case: consider a scenario where a population of bacteria doubles every hour. The initial population is 100 bacteria. We might want to calculate the total population after a certain number of hours. This scenario can be modeled as a geometric progression, where each term represents the population at a specific hour, and the common ratio r is 2 (since the population doubles each hour).

Tarea
test

Swipe to show code editor

Calculate the sum of first n elements of geometric progression using both for loop and the formula described above.

  1. Specify the arguments of the formula.
  2. Specify parameters of for loop.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

In the previous chapter, we discovered a formula to calculate the sum of elements of an arithmetic progression. There is also a formula for the sum of a geometric progression:

Let's discover the following real-life case: consider a scenario where a population of bacteria doubles every hour. The initial population is 100 bacteria. We might want to calculate the total population after a certain number of hours. This scenario can be modeled as a geometric progression, where each term represents the population at a specific hour, and the common ratio r is 2 (since the population doubles each hour).

Tarea
test

Swipe to show code editor

Calculate the sum of first n elements of geometric progression using both for loop and the formula described above.

  1. Specify the arguments of the formula.
  2. Specify parameters of for loop.

Once you've completed this task, click the button below the code to check your solution.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 4
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt