Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Calculate the Matrix Multiplication Result | Linear Algebra
Mathematics for Data Analysis and Modeling

book
Challenge: Calculate the Matrix Multiplication Result

Tarea

Swipe to start coding

Your task is to write code that will multiply two matrices, A and B, using the dot product between two vectors.

  1. Specify the shape of the resulting matrix (number of rows and columns).
  2. Calculate the resulting matrix using the dot product between the corresponding rows of the first matrix and columns of the second matrix.

Solución

import numpy as np

# Define the matrices
A = np.array([[1, 2], [3, 4]]) # Matrix A with shape `(2, 2)`
B = np.array([[5, 6, -1, 0], [7, 8, 3, 1]]) # Matrix B with shape `(2, 4)`

# Calculate the matrix multiplication using dot product
rows = A.shape[0] # Number of rows in resulting matrix
cols = B.shape[1] # Number of cols in resulting matrix
C = np.zeros((rows, cols)) # Initialize the result matrix C

for i in range(rows):
for j in range(cols):
C[i, j] = np.dot(A[i, :], B[:, j]) # Dot product of row `A[i]` and column `B[j]`

# Print the result
print(C)
print(f'Shape of resulting matrix is: {C.shape}')

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
import numpy as np

# Define the matrices
A = np.array([[1, 2], [3, 4]]) # Matrix A with shape `(2, 2)`
B = np.array([[5, 6, -1, 0], [7, 8, 3, 1]]) # Matrix B with shape `(2, 4)`

# Calculate the matrix multiplication using dot product
rows = A.shape[___] # Number of rows in resulting matrix
cols = B.shape[___] # Number of cols in resulting matrix
C = np.zeros((rows, cols)) # Initialize the result matrix C

for i in range(rows):
for j in range(cols):
C[i, j] = np.___(A[i, :], B[:, j]) # Dot product of row `A[i]` and column `B[j]`

# Print the result
print(C)
print(f'Shape of resulting matrix is: {C.shape}')
toggle bottom row
some-alt