Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Matrix Determinant | Linear Algebra
Mathematics for Data Analysis and Modeling

book
Matrix Determinant

The determinant is a mathematical property of a square matrix (matrix with equal number of columns and rows) that provides valuable information about the matrix. The determinant is denoted as det(A) or |A|, where A represents the matrix. The determinant is a single value that can be positive, negative, or zero.

The determinant carries several important properties and interpretations:

  • Invertibility: A square matrix A is invertible (non-singular) if and only if its determinant is nonzero;

  • Area or Volume Scaling: For 2x2 and 3x3 matrices, the determinant provides information about the scaling factor or the change in area/volume under a linear transformation represented by the matrix;

  • Linear Independence: The determinant can determine whether a set of vectors is linearly independent. If the determinant of a matrix composed of vectors is nonzero, the vectors are linearly independent;

  • Solution Existence: In systems of linear equations represented by matrices, the determinant can determine whether a unique solution exists. If the determinant is nonzero, a unique solution exists; otherwise, there may be no solution or an infinite number of solutions.

In Python, we can calculate determinant using np.linalg.det() method:

import numpy as np

# Define a square matrix
A = np.array([[3, 1], [2, 4]])

# Calculate the determinant
det_A = np.linalg.det(A)

# Print the determinant
print(round(det_A, 2))
12345678910
import numpy as np # Define a square matrix A = np.array([[3, 1], [2, 4]]) # Calculate the determinant det_A = np.linalg.det(A) # Print the determinant print(round(det_A, 2))
copy
question mark

Can we calculate the determinant of the following matrix: [[1, 2, -1], [2, 3, 9]]?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

some-alt