Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Model-Based Detection | Model-Based Monitoring
Feature Drift and Data Drift Detection

bookModel-Based Detection

Model-based drift detection is a practical way to identify changes in data distributions using machine learning classifiers.

  • Train a classifier—such as logistic regression—to distinguish between reference (historical) data and current (incoming) data;
  • Combine both datasets and assign labels: 0 for reference and 1 for current;
  • The classifier learns to detect systematic differences between the two groups;
  • If the classifier separates the datasets well, it indicates a shift or drift has occurred between the distributions.

This model-based approach is especially valuable for complex or high-dimensional data, where traditional statistical tests may not be sensitive enough to detect subtle changes.

12345678910111213141516171819202122232425262728293031323334
import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, accuracy_score from sklearn.model_selection import train_test_split # Generate synthetic reference data (normal distribution) np.random.seed(42) reference = np.random.normal(loc=0, scale=1, size=(500, 2)) reference_labels = np.zeros(reference.shape[0]) # Generate synthetic current data (drifted: shifted mean) current = np.random.normal(loc=1.5, scale=1, size=(500, 2)) current_labels = np.ones(current.shape[0]) # Combine datasets X = np.vstack([reference, current]) y = np.concatenate([reference_labels, current_labels]) # Split into train/test for the drift detector X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Fit logistic regression classifier clf = LogisticRegression() clf.fit(X_train, y_train) # Predict and evaluate y_pred = clf.predict(X_test) y_pred_proba = clf.predict_proba(X_test)[:, 1] accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred_proba) print("Drift Detector Accuracy:", accuracy) print("Drift Detector AUC:", auc)
copy

The performance of the classifier—measured by metrics such as accuracy and AUC (Area Under the ROC Curve)—directly reflects the presence of drift:

  • If the classifier achieves high accuracy or high AUC when distinguishing between reference and current data; it indicates the two distributions are different enough for the model to separate them;
  • If the classifier performs close to random guessing (accuracy or AUC near 0.5); it suggests little to no detectable drift.

This model-based approach provides a flexible and scalable way to monitor for distribution shifts, especially in complex or high-dimensional feature spaces where traditional statistical tests may fail to capture subtle changes.

Tarea

Swipe to start coding

You're given two unlabeled datasets from different periods: a reference sample and a current sample. Treat “dataset origin” as a binary label (0 = reference, 1 = current). Train a simple classifier to predict origin; if the model separates them well, distribution shift is likely.

Steps:

  1. Generate synthetic ref and new data (given).
  2. Build domain labels y_domain (0 for ref, 1 for new) and stack into X.
  3. Split into train/test (test_size=0.3, random_state=42).
  4. Train LogisticRegression(max_iter=1000, random_state=0).
  5. Get probabilities on test set; compute auc_score = roc_auc_score(...).
  6. Set drift_detected = (auc_score >= 0.65) and print shapes, AUC, flag.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 1
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 11.11

bookModel-Based Detection

Desliza para mostrar el menú

Model-based drift detection is a practical way to identify changes in data distributions using machine learning classifiers.

  • Train a classifier—such as logistic regression—to distinguish between reference (historical) data and current (incoming) data;
  • Combine both datasets and assign labels: 0 for reference and 1 for current;
  • The classifier learns to detect systematic differences between the two groups;
  • If the classifier separates the datasets well, it indicates a shift or drift has occurred between the distributions.

This model-based approach is especially valuable for complex or high-dimensional data, where traditional statistical tests may not be sensitive enough to detect subtle changes.

12345678910111213141516171819202122232425262728293031323334
import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score, accuracy_score from sklearn.model_selection import train_test_split # Generate synthetic reference data (normal distribution) np.random.seed(42) reference = np.random.normal(loc=0, scale=1, size=(500, 2)) reference_labels = np.zeros(reference.shape[0]) # Generate synthetic current data (drifted: shifted mean) current = np.random.normal(loc=1.5, scale=1, size=(500, 2)) current_labels = np.ones(current.shape[0]) # Combine datasets X = np.vstack([reference, current]) y = np.concatenate([reference_labels, current_labels]) # Split into train/test for the drift detector X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Fit logistic regression classifier clf = LogisticRegression() clf.fit(X_train, y_train) # Predict and evaluate y_pred = clf.predict(X_test) y_pred_proba = clf.predict_proba(X_test)[:, 1] accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred_proba) print("Drift Detector Accuracy:", accuracy) print("Drift Detector AUC:", auc)
copy

The performance of the classifier—measured by metrics such as accuracy and AUC (Area Under the ROC Curve)—directly reflects the presence of drift:

  • If the classifier achieves high accuracy or high AUC when distinguishing between reference and current data; it indicates the two distributions are different enough for the model to separate them;
  • If the classifier performs close to random guessing (accuracy or AUC near 0.5); it suggests little to no detectable drift.

This model-based approach provides a flexible and scalable way to monitor for distribution shifts, especially in complex or high-dimensional feature spaces where traditional statistical tests may fail to capture subtle changes.

Tarea

Swipe to start coding

You're given two unlabeled datasets from different periods: a reference sample and a current sample. Treat “dataset origin” as a binary label (0 = reference, 1 = current). Train a simple classifier to predict origin; if the model separates them well, distribution shift is likely.

Steps:

  1. Generate synthetic ref and new data (given).
  2. Build domain labels y_domain (0 for ref, 1 for new) and stack into X.
  3. Split into train/test (test_size=0.3, random_state=42).
  4. Train LogisticRegression(max_iter=1000, random_state=0).
  5. Get probabilities on test set; compute auc_score = roc_auc_score(...).
  6. Set drift_detected = (auc_score >= 0.65) and print shapes, AUC, flag.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 1
single

single

some-alt