Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Visualizing Legal Trends | Analyzing Legal Case Data
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Legal Professionals

bookVisualizing Legal Trends

Data visualization plays a crucial role in the legal profession by transforming raw data into clear, compelling insights. Charts and graphs help you quickly spot patterns, trends, and anomalies in case data, making complex information more accessible for clients, colleagues, and courts. Whether you are analyzing the outcomes of cases over time or comparing the frequency of certain legal issues, visualizations can clarify your findings and strengthen your communication.

1234567891011121314151617181920212223242526272829
import pandas as pd import matplotlib.pyplot as plt from io import StringIO # Create DataFrame from hardcoded CSV string csv_data = """Case,Outcome,Year Smith v. Jones,Won,2021 State v. Lee,Lost,2021 Adams v. City,Settled,2022 Brown v. Board,Won,2022 Green v. State,Lost,2022 Miller v. White,Won,2023 Davis v. County,Settled,2023 Clark v. Hill,Lost,2023 """ df = pd.read_csv(StringIO(csv_data)) # Count outcomes outcome_counts = df['Outcome'].value_counts() # Create bar chart plt.figure(figsize=(6,4)) outcome_counts.plot(kind='bar', color=['#4caf50', '#f44336', '#2196f3']) plt.xlabel('Case Outcome') plt.ylabel('Number of Cases') plt.title('Case Outcomes Overview') plt.tight_layout() plt.show()
copy

When interpreting a bar chart like the one above, look for which outcomes are most and least common. For example, you can see at a glance whether cases are more often won, lost, or settled. Customizing colors, axis labels, and titles helps make your charts clearer and more professional for legal reports. You can match your firm's branding or highlight specific outcomes to draw attention where it matters most.

1234567891011
import seaborn as sns # Use seaborn to create a countplot of cases by year plt.figure(figsize=(6,4)) sns.countplot(data=df, x='Year', hue='Year', palette='pastel', legend=False) plt.xlabel('Year') plt.ylabel('Number of Cases') plt.title('Number of Cases by Year') plt.tight_layout() plt.show()
copy

1. What is the benefit of visualizing legal data?

2. Fill in the blank: To create a bar chart in matplotlib, use the _______ function.

3. How can visualizations support legal arguments?

question mark

What is the benefit of visualizing legal data?

Select the correct answer

question-icon

Fill in the blank: To create a bar chart in matplotlib, use the _______ function.

Click or drag`n`drop items and fill in the blanks

question mark

How can visualizations support legal arguments?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

bookVisualizing Legal Trends

Desliza para mostrar el menú

Data visualization plays a crucial role in the legal profession by transforming raw data into clear, compelling insights. Charts and graphs help you quickly spot patterns, trends, and anomalies in case data, making complex information more accessible for clients, colleagues, and courts. Whether you are analyzing the outcomes of cases over time or comparing the frequency of certain legal issues, visualizations can clarify your findings and strengthen your communication.

1234567891011121314151617181920212223242526272829
import pandas as pd import matplotlib.pyplot as plt from io import StringIO # Create DataFrame from hardcoded CSV string csv_data = """Case,Outcome,Year Smith v. Jones,Won,2021 State v. Lee,Lost,2021 Adams v. City,Settled,2022 Brown v. Board,Won,2022 Green v. State,Lost,2022 Miller v. White,Won,2023 Davis v. County,Settled,2023 Clark v. Hill,Lost,2023 """ df = pd.read_csv(StringIO(csv_data)) # Count outcomes outcome_counts = df['Outcome'].value_counts() # Create bar chart plt.figure(figsize=(6,4)) outcome_counts.plot(kind='bar', color=['#4caf50', '#f44336', '#2196f3']) plt.xlabel('Case Outcome') plt.ylabel('Number of Cases') plt.title('Case Outcomes Overview') plt.tight_layout() plt.show()
copy

When interpreting a bar chart like the one above, look for which outcomes are most and least common. For example, you can see at a glance whether cases are more often won, lost, or settled. Customizing colors, axis labels, and titles helps make your charts clearer and more professional for legal reports. You can match your firm's branding or highlight specific outcomes to draw attention where it matters most.

1234567891011
import seaborn as sns # Use seaborn to create a countplot of cases by year plt.figure(figsize=(6,4)) sns.countplot(data=df, x='Year', hue='Year', palette='pastel', legend=False) plt.xlabel('Year') plt.ylabel('Number of Cases') plt.title('Number of Cases by Year') plt.tight_layout() plt.show()
copy

1. What is the benefit of visualizing legal data?

2. Fill in the blank: To create a bar chart in matplotlib, use the _______ function.

3. How can visualizations support legal arguments?

question mark

What is the benefit of visualizing legal data?

Select the correct answer

question-icon

Fill in the blank: To create a bar chart in matplotlib, use the _______ function.

Click or drag`n`drop items and fill in the blanks

question mark

How can visualizations support legal arguments?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
some-alt