Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Build a Simple B-Tree | Indexing and Search Structures
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Data Structures and Algorithms for Scalable Systems

bookChallenge: Build a Simple B-Tree

Tarea

Swipe to start coding

In this challenge, you will implement a simplified B-Tree — a balanced search tree widely used in databases and file systems.

Your task is to complete the implementation so that the tree supports:

insert(key):

  • Inserts a new key into the B-Tree.
  • Splits nodes when they overflow to maintain B-Tree properties.
  • The root must split correctly when full.
  • Insertion must always place keys in sorted order.

search(key):

  • Returns True if the key is present in the B-Tree.
  • Returns False if the key is not found.

Additional Rules:

  • The minimum degree t determines the minimum/maximum number of keys in each node.
  • You do not need to implement deletion or disk storage.
  • The tree must correctly handle multiple insertions and node splits.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Build a Simple B-Tree

Desliza para mostrar el menú

Tarea

Swipe to start coding

In this challenge, you will implement a simplified B-Tree — a balanced search tree widely used in databases and file systems.

Your task is to complete the implementation so that the tree supports:

insert(key):

  • Inserts a new key into the B-Tree.
  • Splits nodes when they overflow to maintain B-Tree properties.
  • The root must split correctly when full.
  • Insertion must always place keys in sorted order.

search(key):

  • Returns True if the key is present in the B-Tree.
  • Returns False if the key is not found.

Additional Rules:

  • The minimum degree t determines the minimum/maximum number of keys in each node.
  • You do not need to implement deletion or disk storage.
  • The tree must correctly handle multiple insertions and node splits.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

some-alt